Export of internal Abseil changes

--
e21e960918678629abf89ad1b694b7d4a456b434 by Greg Falcon <gfalcon@google.com>:

Roll back invoke() change due to large increases in compiler memory usage.

PiperOrigin-RevId: 315919455

--
f95872e1e1d7afdefbac94f42ea228d42d80eb6e by Greg Falcon <gfalcon@google.com>:

Rollback of invoke() changes due to compiler memory usage growth

PiperOrigin-RevId: 315911585

--
6c6c6ba6892016a2ce4703042800254fb9b15727 by Laramie Leavitt <lar@google.com>:

Move some of the common mocking code into MockHelpers.

Use MockHelpers to do mock signature detection and improve the dispatch mechansim.

PiperOrigin-RevId: 315825988

--
5e9380367d280c7fa6dbd4d0f48c31ade7f1d419 by Greg Falcon <gfalcon@google.com>:

Rename the internal implementation details Invoke and InvokeT to `invoke` and `invoke_result_t`, since these are re-implementations of C++17 library entites of the same names.

PiperOrigin-RevId: 315790467
GitOrigin-RevId: e21e960918678629abf89ad1b694b7d4a456b434
Change-Id: Ia75011f94cb033c1c9a4cb64cf14d283b91426ac
pull/714/head
Abseil Team 5 years ago committed by vslashg
parent e7ebf98037
commit 2c92bdc7c2
  1. 3
      CMake/AbseilDll.cmake
  2. 123
      absl/base/internal/invoke.h
  3. 34
      absl/base/invoke_test.cc
  4. 19
      absl/functional/bind_front_test.cc
  5. 17
      absl/random/CMakeLists.txt
  6. 2
      absl/random/bit_gen_ref.h
  7. 11
      absl/random/internal/BUILD.bazel
  8. 14
      absl/random/internal/distribution_caller.h
  9. 127
      absl/random/internal/mock_helpers.h
  10. 27
      absl/random/internal/mock_overload_set.h
  11. 7
      absl/random/mocking_bit_gen.h

@ -137,11 +137,12 @@ set(ABSL_INTERNAL_DLL_FILES
"random/gaussian_distribution.cc" "random/gaussian_distribution.cc"
"random/gaussian_distribution.h" "random/gaussian_distribution.h"
"random/internal/distribution_caller.h" "random/internal/distribution_caller.h"
"random/internal/fast_uniform_bits.h"
"random/internal/fastmath.h" "random/internal/fastmath.h"
"random/internal/fast_uniform_bits.h"
"random/internal/gaussian_distribution_gentables.cc" "random/internal/gaussian_distribution_gentables.cc"
"random/internal/generate_real.h" "random/internal/generate_real.h"
"random/internal/iostream_state_saver.h" "random/internal/iostream_state_saver.h"
"random/internal/mock_helpers.h"
"random/internal/nonsecure_base.h" "random/internal/nonsecure_base.h"
"random/internal/pcg_engine.h" "random/internal/pcg_engine.h"
"random/internal/platform.h" "random/internal/platform.h"

@ -18,19 +18,16 @@
// [func.require] // [func.require]
// Define INVOKE (f, t1, t2, ..., tN) as follows: // Define INVOKE (f, t1, t2, ..., tN) as follows:
// 1. (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T // 1. (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T
// and is_base_of_v<T, remove_reference_t<decltype(t1)>> is true; // and t1 is an object of type T or a reference to an object of type T or a
// 2. (t1.get().*f)(t2, ..., tN) when f is a pointer to a member function of a // reference to an object of a type derived from T;
// class T and remove_cvref_t<decltype(t1)> is a specialization of // 2. ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a
// reference_wrapper; // class T and t1 is not one of the types described in the previous item;
// 3. ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a // 3. t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is
// class T and t1 does not satisfy the previous two items; // an object of type T or a reference to an object of type T or a reference
// 4. t1.*f when N == 1 and f is a pointer to data member of a class T and // to an object of a type derived from T;
// is_base_of_v<T, remove_reference_t<decltype(t1)>> is true; // 4. (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1
// 5. t1.get().*f when N == 1 and f is a pointer to data member of a class T and // is not one of the types described in the previous item;
// remove_cvref_t<decltype(t1)> is a specialization of reference_wrapper; // 5. f(t1, t2, ..., tN) in all other cases.
// 6. (*t1).*f when N == 1 and f is a pointer to data member of a class T and t1
// does not satisfy the previous two items;
// 7. f(t1, t2, ..., tN) in all other cases.
// //
// The implementation is SFINAE-friendly: substitution failure within Invoke() // The implementation is SFINAE-friendly: substitution failure within Invoke()
// isn't an error. // isn't an error.
@ -51,16 +48,7 @@ namespace absl {
ABSL_NAMESPACE_BEGIN ABSL_NAMESPACE_BEGIN
namespace base_internal { namespace base_internal {
template <typename T> // The five classes below each implement one of the clauses from the definition
struct IsReferenceWrapper : std::false_type {};
template <typename T>
struct IsReferenceWrapper<std::reference_wrapper<T>> : std::true_type {};
template <typename T>
using RemoveCvrefT =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
// The seven classes below each implement one of the clauses from the definition
// of INVOKE. The inner class template Accept<F, Args...> checks whether the // of INVOKE. The inner class template Accept<F, Args...> checks whether the
// clause is applicable; static function template Invoke(f, args...) does the // clause is applicable; static function template Invoke(f, args...) does the
// invocation. // invocation.
@ -84,10 +72,9 @@ struct MemFunAndRef : StrippedAccept<MemFunAndRef> {
template <typename MemFunType, typename C, typename Obj, typename... Args> template <typename MemFunType, typename C, typename Obj, typename... Args>
struct AcceptImpl<MemFunType C::*, Obj, Args...> struct AcceptImpl<MemFunType C::*, Obj, Args...>
: std::integral_constant< : std::integral_constant<bool, std::is_base_of<C, Obj>::value &&
bool, std::is_base_of< absl::is_function<MemFunType>::value> {
C, typename std::remove_reference<Obj>::type>::value && };
absl::is_function<MemFunType>::value> {};
template <typename MemFun, typename Obj, typename... Args> template <typename MemFun, typename Obj, typename... Args>
static decltype((std::declval<Obj>().* static decltype((std::declval<Obj>().*
@ -98,41 +85,17 @@ struct MemFunAndRef : StrippedAccept<MemFunAndRef> {
} }
}; };
// (t1.get().*f)(t2, ..., tN) when f is a pointer to a member function of a
// class T and remove_cvref_t<decltype(t1)> is a specialization of
// reference_wrapper;
struct MemFunAndRefWrap : StrippedAccept<MemFunAndRefWrap> {
template <typename... Args>
struct AcceptImpl : std::false_type {};
template <typename MemFunType, typename C, typename RefWrap, typename... Args>
struct AcceptImpl<MemFunType C::*, RefWrap, Args...>
: std::integral_constant<
bool, IsReferenceWrapper<RemoveCvrefT<RefWrap>>::value &&
absl::is_function<MemFunType>::value> {};
template <typename MemFun, typename RefWrap, typename... Args>
static decltype((std::declval<RefWrap>().get().*
std::declval<MemFun>())(std::declval<Args>()...))
Invoke(MemFun&& mem_fun, RefWrap&& ref_wrap, Args&&... args) {
return (std::forward<RefWrap>(ref_wrap).get().*
std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...);
}
};
// ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a // ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a
// class T and t1 does not satisfy the previous two items; // class T and t1 is not one of the types described in the previous item.
struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> { struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> {
template <typename... Args> template <typename... Args>
struct AcceptImpl : std::false_type {}; struct AcceptImpl : std::false_type {};
template <typename MemFunType, typename C, typename Ptr, typename... Args> template <typename MemFunType, typename C, typename Ptr, typename... Args>
struct AcceptImpl<MemFunType C::*, Ptr, Args...> struct AcceptImpl<MemFunType C::*, Ptr, Args...>
: std::integral_constant< : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value &&
bool, !std::is_base_of< absl::is_function<MemFunType>::value> {
C, typename std::remove_reference<Ptr>::type>::value && };
!IsReferenceWrapper<RemoveCvrefT<Ptr>>::value &&
absl::is_function<MemFunType>::value> {};
template <typename MemFun, typename Ptr, typename... Args> template <typename MemFun, typename Ptr, typename... Args>
static decltype(((*std::declval<Ptr>()).* static decltype(((*std::declval<Ptr>()).*
@ -143,17 +106,16 @@ struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> {
} }
}; };
// t1.*f when N == 1 and f is a pointer to data member of a class T and // t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is
// is_base_of_v<T, remove_reference_t<decltype(t1)>> is true; // an object of type T or a reference to an object of type T or a reference
// to an object of a type derived from T.
struct DataMemAndRef : StrippedAccept<DataMemAndRef> { struct DataMemAndRef : StrippedAccept<DataMemAndRef> {
template <typename... Args> template <typename... Args>
struct AcceptImpl : std::false_type {}; struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename Obj> template <typename R, typename C, typename Obj>
struct AcceptImpl<R C::*, Obj> struct AcceptImpl<R C::*, Obj>
: std::integral_constant< : std::integral_constant<bool, std::is_base_of<C, Obj>::value &&
bool, std::is_base_of<
C, typename std::remove_reference<Obj>::type>::value &&
!absl::is_function<R>::value> {}; !absl::is_function<R>::value> {};
template <typename DataMem, typename Ref> template <typename DataMem, typename Ref>
@ -163,38 +125,15 @@ struct DataMemAndRef : StrippedAccept<DataMemAndRef> {
} }
}; };
// t1.get().*f when N == 1 and f is a pointer to data member of a class T and // (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1
// remove_cvref_t<decltype(t1)> is a specialization of reference_wrapper; // is not one of the types described in the previous item.
struct DataMemAndRefWrap : StrippedAccept<DataMemAndRefWrap> {
template <typename... Args>
struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename RefWrap>
struct AcceptImpl<R C::*, RefWrap>
: std::integral_constant<
bool, IsReferenceWrapper<RemoveCvrefT<RefWrap>>::value &&
!absl::is_function<R>::value> {};
template <typename DataMem, typename RefWrap>
static decltype(std::declval<RefWrap>().get().*std::declval<DataMem>())
Invoke(DataMem&& data_mem, RefWrap&& ref_wrap) {
return std::forward<RefWrap>(ref_wrap).get().*
std::forward<DataMem>(data_mem);
}
};
// (*t1).*f when N == 1 and f is a pointer to data member of a class T and t1
// does not satisfy the previous two items;
struct DataMemAndPtr : StrippedAccept<DataMemAndPtr> { struct DataMemAndPtr : StrippedAccept<DataMemAndPtr> {
template <typename... Args> template <typename... Args>
struct AcceptImpl : std::false_type {}; struct AcceptImpl : std::false_type {};
template <typename R, typename C, typename Ptr> template <typename R, typename C, typename Ptr>
struct AcceptImpl<R C::*, Ptr> struct AcceptImpl<R C::*, Ptr>
: std::integral_constant< : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value &&
bool, !std::is_base_of<
C, typename std::remove_reference<Ptr>::type>::value &&
!IsReferenceWrapper<RemoveCvrefT<Ptr>>::value &&
!absl::is_function<R>::value> {}; !absl::is_function<R>::value> {};
template <typename DataMem, typename Ptr> template <typename DataMem, typename Ptr>
@ -220,19 +159,13 @@ template <typename... Args>
struct Invoker { struct Invoker {
typedef typename std::conditional< typedef typename std::conditional<
MemFunAndRef::Accept<Args...>::value, MemFunAndRef, MemFunAndRef::Accept<Args...>::value, MemFunAndRef,
typename std::conditional<
MemFunAndRefWrap::Accept<Args...>::value, MemFunAndRefWrap,
typename std::conditional< typename std::conditional<
MemFunAndPtr::Accept<Args...>::value, MemFunAndPtr, MemFunAndPtr::Accept<Args...>::value, MemFunAndPtr,
typename std::conditional< typename std::conditional<
DataMemAndRef::Accept<Args...>::value, DataMemAndRef, DataMemAndRef::Accept<Args...>::value, DataMemAndRef,
typename std::conditional< typename std::conditional<DataMemAndPtr::Accept<Args...>::value,
DataMemAndRefWrap::Accept<Args...>::value, DataMemAndPtr, Callable>::type>::type>::
DataMemAndRefWrap, type>::type type;
typename std::conditional<
DataMemAndPtr::Accept<Args...>::value, DataMemAndPtr,
Callable>::type>::type>::type>::type>::type>::type
type;
}; };
// The result type of Invoke<F, Args...>. // The result type of Invoke<F, Args...>.

@ -158,56 +158,31 @@ TEST(InvokeTest, MemberFunction) {
std::unique_ptr<const Class> cp(new Class); std::unique_ptr<const Class> cp(new Class);
std::unique_ptr<volatile Class> vp(new Class); std::unique_ptr<volatile Class> vp(new Class);
Class c;
std::reference_wrapper<Class> ref(c);
std::reference_wrapper<const Class> ref_const(c);
const std::reference_wrapper<Class> const_ref(c);
std::reference_wrapper<volatile Class> ref_volatile(c);
EXPECT_EQ(1, Invoke(&Class::Method, p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::Method, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, p.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::Method, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, *p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::Method, *p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, const_ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, std::move(ref), 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefMethod, p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::RefMethod, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefMethod, p.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::RefMethod, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefMethod, *p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::RefMethod, *p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefMethod, ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefMethod, const_ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefMethod, std::move(ref), 3, 2));
EXPECT_EQ(1, Invoke(&Class::RefRefMethod, std::move(*p), 3, 2)); // NOLINT EXPECT_EQ(1, Invoke(&Class::RefRefMethod, std::move(*p), 3, 2)); // NOLINT
EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, p.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, *p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, *p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, const_ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::NoExceptMethod, std::move(ref), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, p.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, *p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, *p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, const_ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, std::move(ref), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, cp, 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, cp, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, cp.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, cp.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, *cp, 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, *cp, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, ref_const, 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, std::move(ref_const), 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::VolatileMethod, p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, p.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::VolatileMethod, p.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, *p, 3, 2)); EXPECT_EQ(1, Invoke(&Class::VolatileMethod, *p, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, const_ref, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, std::move(ref), 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, vp, 3, 2)); EXPECT_EQ(1, Invoke(&Class::VolatileMethod, vp, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, vp.get(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::VolatileMethod, vp.get(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, *vp, 3, 2)); EXPECT_EQ(1, Invoke(&Class::VolatileMethod, *vp, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, ref_volatile, 3, 2));
EXPECT_EQ(1, Invoke(&Class::VolatileMethod, std::move(ref_volatile), 3, 2));
EXPECT_EQ(1, Invoke(&Class::Method, make_unique<Class>(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::Method, make_unique<Class>(), 3, 2));
EXPECT_EQ(1, Invoke(&Class::ConstMethod, make_unique<Class>(), 3, 2)); EXPECT_EQ(1, Invoke(&Class::ConstMethod, make_unique<Class>(), 3, 2));
@ -217,15 +192,8 @@ TEST(InvokeTest, MemberFunction) {
TEST(InvokeTest, DataMember) { TEST(InvokeTest, DataMember) {
std::unique_ptr<Class> p(new Class{42}); std::unique_ptr<Class> p(new Class{42});
std::unique_ptr<const Class> cp(new Class{42}); std::unique_ptr<const Class> cp(new Class{42});
Class c{42};
std::reference_wrapper<Class> ref(c);
std::reference_wrapper<const Class> ref_const(c);
const std::reference_wrapper<Class> const_ref(c);
EXPECT_EQ(42, Invoke(&Class::member, p)); EXPECT_EQ(42, Invoke(&Class::member, p));
EXPECT_EQ(42, Invoke(&Class::member, *p)); EXPECT_EQ(42, Invoke(&Class::member, *p));
EXPECT_EQ(42, Invoke(&Class::member, ref));
EXPECT_EQ(42, Invoke(&Class::member, const_ref));
EXPECT_EQ(42, Invoke(&Class::member, std::move(ref)));
EXPECT_EQ(42, Invoke(&Class::member, p.get())); EXPECT_EQ(42, Invoke(&Class::member, p.get()));
Invoke(&Class::member, p) = 42; Invoke(&Class::member, p) = 42;
@ -233,8 +201,6 @@ TEST(InvokeTest, DataMember) {
EXPECT_EQ(42, Invoke(&Class::member, cp)); EXPECT_EQ(42, Invoke(&Class::member, cp));
EXPECT_EQ(42, Invoke(&Class::member, *cp)); EXPECT_EQ(42, Invoke(&Class::member, *cp));
EXPECT_EQ(42, Invoke(&Class::member, ref_const));
EXPECT_EQ(42, Invoke(&Class::member, std::move(ref_const)));
EXPECT_EQ(42, Invoke(&Class::member, cp.get())); EXPECT_EQ(42, Invoke(&Class::member, cp.get()));
} }

@ -228,23 +228,4 @@ TEST(BindTest, Mangling) {
absl::bind_front(ManglingCall{}, 1, 3.3)("A"); absl::bind_front(ManglingCall{}, 1, 3.3)("A");
} }
struct Adder {
int add(int v2) const { return v + v2; }
int v;
};
TEST(BindTest, InvokeSemantics) {
Struct s1 = {"value"};
auto f1 = absl::bind_front(&Struct::value);
EXPECT_EQ(f1(s1), "value");
EXPECT_EQ(f1(&s1), "value");
EXPECT_EQ(f1(std::ref(s1)), "value");
Adder add_100 = {100};
auto f2 = absl::bind_front(&Adder::add);
EXPECT_EQ(f2(add_100, 23), 123);
EXPECT_EQ(f2(&add_100, 45), 145);
EXPECT_EQ(f2(std::ref(add_100), 67), 167);
}
} // namespace } // namespace

@ -66,6 +66,21 @@ absl_cc_test(
gtest_main gtest_main
) )
# Internal-only target, do not depend on directly.
absl_cc_library(
NAME
random_internal_mock_helpers
HDRS
"internal/mock_helpers.h"
COPTS
${ABSL_DEFAULT_COPTS}
LINKOPTS
${ABSL_DEFAULT_LINKOPTS}
DEPS
absl::fast_type_id
absl::optional
)
# Internal-only target, do not depend on directly. # Internal-only target, do not depend on directly.
absl_cc_library( absl_cc_library(
NAME NAME
@ -78,7 +93,7 @@ absl_cc_library(
${ABSL_DEFAULT_LINKOPTS} ${ABSL_DEFAULT_LINKOPTS}
DEPS DEPS
absl::random_mocking_bit_gen absl::random_mocking_bit_gen
absl::fast_type_id absl::random_internal_mock_helpers
TESTONLY TESTONLY
) )

@ -53,6 +53,7 @@ struct is_urbg<
template <typename> template <typename>
struct DistributionCaller; struct DistributionCaller;
class MockHelpers;
} // namespace random_internal } // namespace random_internal
@ -171,6 +172,7 @@ class BitGenRef {
template <typename> template <typename>
friend struct ::absl::random_internal::DistributionCaller; // for InvokeMock friend struct ::absl::random_internal::DistributionCaller; // for InvokeMock
friend class ::absl::random_internal::MockHelpers; // for InvokeMock
}; };
ABSL_NAMESPACE_END ABSL_NAMESPACE_END

@ -484,12 +484,21 @@ cc_test(
], ],
) )
cc_library(
name = "mock_helpers",
hdrs = ["mock_helpers.h"],
deps = [
"//absl/base:fast_type_id",
"//absl/types:optional",
],
)
cc_library( cc_library(
name = "mock_overload_set", name = "mock_overload_set",
testonly = 1, testonly = 1,
hdrs = ["mock_overload_set.h"], hdrs = ["mock_overload_set.h"],
deps = [ deps = [
"//absl/base:fast_type_id", ":mock_helpers",
"//absl/random:mocking_bit_gen", "//absl/random:mocking_bit_gen",
"@com_google_googletest//:gtest", "@com_google_googletest//:gtest",
], ],

@ -52,23 +52,25 @@ struct DistributionCaller {
// Default implementation of distribution caller. // Default implementation of distribution caller.
template <typename DistrT, typename... Args> template <typename DistrT, typename... Args>
static inline typename DistrT::result_type Impl(std::false_type, URBG* urbg, static typename DistrT::result_type Impl(std::false_type, URBG* urbg,
Args&&... args) { Args&&... args) {
DistrT dist(std::forward<Args>(args)...); DistrT dist(std::forward<Args>(args)...);
return dist(*urbg); return dist(*urbg);
} }
// Mock implementation of distribution caller. // Mock implementation of distribution caller.
// The underlying KeyT must match the KeyT constructed by MockOverloadSet.
template <typename DistrT, typename... Args> template <typename DistrT, typename... Args>
static inline typename DistrT::result_type Impl(std::true_type, URBG* urbg, static typename DistrT::result_type Impl(std::true_type, URBG* urbg,
Args&&... args) { Args&&... args) {
using ResultT = typename DistrT::result_type; using ResultT = typename DistrT::result_type;
using ArgTupleT = std::tuple<absl::decay_t<Args>...>; using ArgTupleT = std::tuple<absl::decay_t<Args>...>;
using KeyT = ResultT(DistrT, ArgTupleT);
ArgTupleT arg_tuple(std::forward<Args>(args)...); ArgTupleT arg_tuple(std::forward<Args>(args)...);
ResultT result; ResultT result;
if (!urbg->InvokeMock( if (!urbg->InvokeMock(::absl::base_internal::FastTypeId<KeyT>(), &arg_tuple,
::absl::base_internal::FastTypeId<ResultT(DistrT, ArgTupleT)>(), &result)) {
&arg_tuple, &result)) {
auto dist = absl::make_from_tuple<DistrT>(arg_tuple); auto dist = absl::make_from_tuple<DistrT>(arg_tuple);
result = dist(*urbg); result = dist(*urbg);
} }
@ -77,7 +79,7 @@ struct DistributionCaller {
// Default implementation of distribution caller. // Default implementation of distribution caller.
template <typename DistrT, typename... Args> template <typename DistrT, typename... Args>
static inline typename DistrT::result_type Call(URBG* urbg, Args&&... args) { static typename DistrT::result_type Call(URBG* urbg, Args&&... args) {
return Impl<DistrT, Args...>(HasInvokeMock{}, urbg, return Impl<DistrT, Args...>(HasInvokeMock{}, urbg,
std::forward<Args>(args)...); std::forward<Args>(args)...);
} }

@ -0,0 +1,127 @@
//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_INTERNAL_MOCK_HELPERS_H_
#define ABSL_RANDOM_INTERNAL_MOCK_HELPERS_H_
#include <tuple>
#include <type_traits>
#include "absl/base/internal/fast_type_id.h"
#include "absl/types/optional.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
// MockHelpers works in conjunction with MockOverloadSet, MockingBitGen, and
// BitGenRef to enable the mocking capability for absl distribution functions.
//
// MockingBitGen registers mocks based on the typeid of a mock signature, KeyT,
// which is used to generate a unique id.
//
// KeyT is a signature of the form:
// result_type(discriminator_type, std::tuple<args...>)
// The mocked function signature will be composed from KeyT as:
// result_type(args...)
//
class MockHelpers {
using IdType = ::absl::base_internal::FastTypeIdType;
// Given a key signature type used to index the mock, extract the components.
// KeyT is expected to have the form:
// result_type(discriminator_type, arg_tuple_type)
template <typename KeyT>
struct KeySignature;
template <typename ResultT, typename DiscriminatorT, typename ArgTupleT>
struct KeySignature<ResultT(DiscriminatorT, ArgTupleT)> {
using result_type = ResultT;
using discriminator_type = DiscriminatorT;
using arg_tuple_type = ArgTupleT;
};
// Detector for InvokeMock.
template <class T>
using invoke_mock_t = decltype(std::declval<T*>()->InvokeMock(
std::declval<IdType>(), std::declval<void*>(), std::declval<void*>()));
// Empty implementation of InvokeMock.
template <typename KeyT, typename ReturnT, typename ArgTupleT, typename URBG,
typename... Args>
static absl::optional<ReturnT> InvokeMockImpl(char, URBG*, Args&&...) {
return absl::nullopt;
}
// Non-empty implementation of InvokeMock.
template <typename KeyT, typename ReturnT, typename ArgTupleT, typename URBG,
typename = invoke_mock_t<URBG>, typename... Args>
static absl::optional<ReturnT> InvokeMockImpl(int, URBG* urbg,
Args&&... args) {
ArgTupleT arg_tuple(std::forward<Args>(args)...);
ReturnT result;
if (urbg->InvokeMock(::absl::base_internal::FastTypeId<KeyT>(), &arg_tuple,
&result)) {
return result;
}
return absl::nullopt;
}
public:
// Invoke a mock for the KeyT (may or may not be a signature).
//
// KeyT is used to generate a typeid-based lookup key for the mock.
// KeyT is a signature of the form:
// result_type(discriminator_type, std::tuple<args...>)
// The mocked function signature will be composed from KeyT as:
// result_type(args...)
//
// An instance of arg_tuple_type must be constructable from Args..., since
// the underlying mechanism requires a pointer to an argument tuple.
template <typename KeyT, typename URBG, typename... Args>
static auto MaybeInvokeMock(URBG* urbg, Args&&... args)
-> absl::optional<typename KeySignature<KeyT>::result_type> {
// Use function overloading to dispatch to the implemenation since
// more modern patterns (e.g. require + constexpr) are not supported in all
// compiler configurations.
return InvokeMockImpl<KeyT, typename KeySignature<KeyT>::result_type,
typename KeySignature<KeyT>::arg_tuple_type, URBG>(
0, urbg, std::forward<Args>(args)...);
}
// Acquire a mock for the KeyT (may or may not be a signature).
//
// KeyT is used to generate a typeid-based lookup for the mock.
// KeyT is a signature of the form:
// result_type(discriminator_type, std::tuple<args...>)
// The mocked function signature will be composed from KeyT as:
// result_type(args...)
template <typename KeyT, typename MockURBG>
static auto MockFor(MockURBG& m) -> decltype(
std::declval<MockURBG>()
.template RegisterMock<typename KeySignature<KeyT>::result_type,
typename KeySignature<KeyT>::arg_tuple_type>(
std::declval<IdType>())) {
return m.template RegisterMock<typename KeySignature<KeyT>::result_type,
typename KeySignature<KeyT>::arg_tuple_type>(
::absl::base_internal::FastTypeId<KeyT>());
}
};
} // namespace random_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_RANDOM_INTERNAL_MOCK_HELPERS_H_

@ -20,7 +20,7 @@
#include "gmock/gmock.h" #include "gmock/gmock.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "absl/base/internal/fast_type_id.h" #include "absl/random/internal/mock_helpers.h"
#include "absl/random/mocking_bit_gen.h" #include "absl/random/mocking_bit_gen.h"
namespace absl { namespace absl {
@ -37,22 +37,19 @@ struct MockSingleOverload;
// `mock_single_overload.gmock_Call(...)`. Because expectations are stored on // `mock_single_overload.gmock_Call(...)`. Because expectations are stored on
// the MockingBitGen (an argument passed inside `Call(...)`), this forwards to // the MockingBitGen (an argument passed inside `Call(...)`), this forwards to
// arguments to MockingBitGen::Register. // arguments to MockingBitGen::Register.
//
// The underlying KeyT must match the KeyT constructed by DistributionCaller.
template <typename DistrT, typename Ret, typename... Args> template <typename DistrT, typename Ret, typename... Args>
struct MockSingleOverload<DistrT, Ret(MockingBitGen&, Args...)> { struct MockSingleOverload<DistrT, Ret(MockingBitGen&, Args...)> {
static_assert(std::is_same<typename DistrT::result_type, Ret>::value, static_assert(std::is_same<typename DistrT::result_type, Ret>::value,
"Overload signature must have return type matching the " "Overload signature must have return type matching the "
"distribution result_type."); "distribution result_type.");
using ArgTupleT = std::tuple<Args...>; using KeyT = Ret(DistrT, std::tuple<Args...>);
auto gmock_Call( auto gmock_Call(
absl::MockingBitGen& gen, // NOLINT(google-runtime-references) absl::MockingBitGen& gen, // NOLINT(google-runtime-references)
const ::testing::Matcher<Args>&... matchers) const ::testing::Matcher<Args>&... matchers)
-> decltype(gen.RegisterMock<Ret, ArgTupleT>( -> decltype(MockHelpers::MockFor<KeyT>(gen).gmock_Call(matchers...)) {
std::declval<::absl::base_internal::FastTypeIdType>()) return MockHelpers::MockFor<KeyT>(gen).gmock_Call(matchers...);
.gmock_Call(matchers...)) {
return gen
.RegisterMock<Ret, ArgTupleT>(
::absl::base_internal::FastTypeId<Ret(DistrT, ArgTupleT)>())
.gmock_Call(matchers...);
} }
}; };
@ -61,18 +58,14 @@ struct MockSingleOverload<DistrT, Ret(Arg, MockingBitGen&, Args...)> {
static_assert(std::is_same<typename DistrT::result_type, Ret>::value, static_assert(std::is_same<typename DistrT::result_type, Ret>::value,
"Overload signature must have return type matching the " "Overload signature must have return type matching the "
"distribution result_type."); "distribution result_type.");
using ArgTupleT = std::tuple<Arg, Args...>; using KeyT = Ret(DistrT, std::tuple<Arg, Args...>);
auto gmock_Call( auto gmock_Call(
const ::testing::Matcher<Arg>& matcher, const ::testing::Matcher<Arg>& matcher,
absl::MockingBitGen& gen, // NOLINT(google-runtime-references) absl::MockingBitGen& gen, // NOLINT(google-runtime-references)
const ::testing::Matcher<Args>&... matchers) const ::testing::Matcher<Args>&... matchers)
-> decltype(gen.RegisterMock<Ret, ArgTupleT>( -> decltype(MockHelpers::MockFor<KeyT>(gen).gmock_Call(matcher,
std::declval<::absl::base_internal::FastTypeIdType>()) matchers...)) {
.gmock_Call(matcher, matchers...)) { return MockHelpers::MockFor<KeyT>(gen).gmock_Call(matcher, matchers...);
return gen
.RegisterMock<Ret, ArgTupleT>(
::absl::base_internal::FastTypeId<Ret(DistrT, ArgTupleT)>())
.gmock_Call(matcher, matchers...);
} }
}; };

@ -53,10 +53,9 @@ namespace absl {
ABSL_NAMESPACE_BEGIN ABSL_NAMESPACE_BEGIN
namespace random_internal { namespace random_internal {
template <typename, typename>
struct MockSingleOverload;
template <typename> template <typename>
struct DistributionCaller; struct DistributionCaller;
class MockHelpers;
} // namespace random_internal } // namespace random_internal
class BitGenRef; class BitGenRef;
@ -216,11 +215,11 @@ class MockingBitGen {
std::vector<std::function<void()>> deleters_; std::vector<std::function<void()>> deleters_;
absl::BitGen gen_; absl::BitGen gen_;
template <typename, typename>
friend struct ::absl::random_internal::MockSingleOverload; // for Register
template <typename> template <typename>
friend struct ::absl::random_internal::DistributionCaller; // for InvokeMock friend struct ::absl::random_internal::DistributionCaller; // for InvokeMock
friend class ::absl::BitGenRef; // for InvokeMock friend class ::absl::BitGenRef; // for InvokeMock
friend class ::absl::random_internal::MockHelpers; // for RegisterMock,
// InvokeMock
}; };
ABSL_NAMESPACE_END ABSL_NAMESPACE_END

Loading…
Cancel
Save