Export of internal Abseil changes

--
1bc4d36e13fb9175ea8cdaa00213aa9d4417c669 by Andy Getzendanner <durandal@google.com>:

Fix pointer format specifier in documentation

Import of https://github.com/abseil/abseil-cpp/pull/614

PiperOrigin-RevId: 293227540

--
c7b43b30493c4fb5f2ec3264672b08bfe1ea3709 by Abseil Team <absl-team@google.com>:

Internal change.

PiperOrigin-RevId: 293160245

--
64439365e2b4a0b5e51ae0a7dafdb15912402dfd by Shahriar Rouf <nafi@google.com>:

Add benchmarks for string_view: BM_CompareFirstOneLess and BM_CompareSecondOneLess.

PiperOrigin-RevId: 293031676

--
b273b420cab24a6e3f487430987e09f4eb1caec4 by Greg Falcon <gfalcon@google.com>:

Remove an unreachable line from charconv.cc.

Fixes github issue #613.

PiperOrigin-RevId: 292980167

--
70babb5f7a3d9fdd00a2b3085c3c2b9fe0265c79 by Gennadiy Rozental <rogeeff@google.com>:

Move GetFlag implementation into FlagImpl.

This change will allow us to hide details of GetFlag overloads inside implementation detais. Eventually we'll migrate to a different implementation. No semantic changes in this CL.

PiperOrigin-RevId: 292930847

--
94bee7b7cc31e0167ee4b953281c1e78c96a574a by Abseil Team <absl-team@google.com>:

Clarification in absl::Exponential documentation.

PiperOrigin-RevId: 292912672

--
d6916d30c5c1d3ee9ae46d69ec0a166a760c99c7 by Derek Mauro <dmauro@google.com>:

Make AtomicHook constant-initializable on Clang for Windows.

Only mark AtomicHook as constant-initializable on platforms where it
is actually constant-initializable.

PiperOrigin-RevId: 292655939
GitOrigin-RevId: 1bc4d36e13fb9175ea8cdaa00213aa9d4417c669
Change-Id: I090b231a0ca0d92868e494ab5b3fa86c902889d5
pull/615/head
Abseil Team 5 years ago committed by Andy Getz
parent 36bcd9599b
commit 08a7e7bf97
  1. 5
      absl/base/BUILD.bazel
  2. 1
      absl/base/CMakeLists.txt
  3. 39
      absl/base/internal/atomic_hook.h
  4. 9
      absl/base/internal/atomic_hook_test.cc
  5. 3
      absl/base/internal/atomic_hook_test_helper.cc
  6. 12
      absl/base/internal/raw_logging.cc
  7. 3
      absl/base/internal/raw_logging.h
  8. 4
      absl/base/internal/spinlock.cc
  9. 346
      absl/container/internal/btree.h
  10. 33
      absl/flags/flag.h
  11. 28
      absl/flags/internal/flag.h
  12. 8
      absl/random/distributions.h
  13. 1
      absl/strings/charconv.cc
  14. 34
      absl/strings/string_view_benchmark.cc
  15. 17
      absl/synchronization/mutex.cc

@ -34,7 +34,10 @@ cc_library(
visibility = [ visibility = [
"//absl:__subpackages__", "//absl:__subpackages__",
], ],
deps = [":config"], deps = [
":config",
":core_headers",
],
) )
cc_library( cc_library(

@ -23,6 +23,7 @@ absl_cc_library(
"internal/atomic_hook.h" "internal/atomic_hook.h"
DEPS DEPS
absl::config absl::config
absl::core_headers
COPTS COPTS
${ABSL_DEFAULT_COPTS} ${ABSL_DEFAULT_COPTS}
) )

@ -20,16 +20,21 @@
#include <cstdint> #include <cstdint>
#include <utility> #include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h" #include "absl/base/config.h"
#ifdef _MSC_FULL_VER #if defined(_MSC_VER) && !defined(__clang__)
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 0
#define ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT 0 #define ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT 0
#else #else
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 1
#define ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT 1 #define ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT 1
#endif #endif
#if defined(_MSC_VER)
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 0
#else
#define ABSL_HAVE_WORKING_ATOMIC_POINTER 1
#endif
namespace absl { namespace absl {
ABSL_NAMESPACE_BEGIN ABSL_NAMESPACE_BEGIN
namespace base_internal { namespace base_internal {
@ -37,6 +42,15 @@ namespace base_internal {
template <typename T> template <typename T>
class AtomicHook; class AtomicHook;
// To workaround AtomicHook not being constant-initializable on some platforms,
// prefer to annotate instances with `ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES`
// instead of `ABSL_CONST_INIT`.
#if ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT
#define ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES ABSL_CONST_INIT
#else
#define ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
#endif
// `AtomicHook` is a helper class, templatized on a raw function pointer type, // `AtomicHook` is a helper class, templatized on a raw function pointer type,
// for implementing Abseil customization hooks. It is a callable object that // for implementing Abseil customization hooks. It is a callable object that
// dispatches to the registered hook. Objects of type `AtomicHook` must have // dispatches to the registered hook. Objects of type `AtomicHook` must have
@ -45,8 +59,11 @@ class AtomicHook;
// A default constructed object performs a no-op (and returns a default // A default constructed object performs a no-op (and returns a default
// constructed object) if no hook has been registered. // constructed object) if no hook has been registered.
// //
// Hooks can be pre-registered via constant initialization, for example, // Hooks can be pre-registered via constant initialization, for example:
// `ABSL_CONST_INIT static AtomicHook<void(*)()> my_hook(DefaultAction);` //
// ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static AtomicHook<void(*)()>
// my_hook(DefaultAction);
//
// and then changed at runtime via a call to `Store()`. // and then changed at runtime via a call to `Store()`.
// //
// Reads and writes guarantee memory_order_acquire/memory_order_release // Reads and writes guarantee memory_order_acquire/memory_order_release
@ -65,11 +82,15 @@ class AtomicHook<ReturnType (*)(Args...)> {
#if ABSL_HAVE_WORKING_ATOMIC_POINTER && ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT #if ABSL_HAVE_WORKING_ATOMIC_POINTER && ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT
explicit constexpr AtomicHook(FnPtr default_fn) explicit constexpr AtomicHook(FnPtr default_fn)
: hook_(default_fn), default_fn_(default_fn) {} : hook_(default_fn), default_fn_(default_fn) {}
#elif ABSL_HAVE_WORKING_CONSTEXPR_STATIC_INIT
explicit constexpr AtomicHook(FnPtr default_fn)
: hook_(kUninitialized), default_fn_(default_fn) {}
#else #else
// On MSVC, this function sometimes executes after dynamic initialization =(. // As of January 2020, on all known versions of MSVC this constructor runs in
// If a non-zero `hook_` has been installed by a dynamic initializer, we want // the global constructor sequence. If `Store()` is called by a dynamic
// to preserve it. If not, `hook_` will be zero initialized and we have no // initializer, we want to preserve the value, even if this constructor runs
// need to set it to `kUninitialized`. // after the call to `Store()`. If not, `hook_` will be
// zero-initialized by the linker and we have no need to set it.
// https://developercommunity.visualstudio.com/content/problem/336946/class-with-constexpr-constructor-not-using-static.html // https://developercommunity.visualstudio.com/content/problem/336946/class-with-constexpr-constructor-not-using-static.html
explicit constexpr AtomicHook(FnPtr default_fn) explicit constexpr AtomicHook(FnPtr default_fn)
: /* hook_(deliberately omitted), */ default_fn_(default_fn) { : /* hook_(deliberately omitted), */ default_fn_(default_fn) {

@ -27,7 +27,9 @@ int value = 0;
void TestHook(int x) { value = x; } void TestHook(int x) { value = x; }
TEST(AtomicHookTest, NoDefaultFunction) { TEST(AtomicHookTest, NoDefaultFunction) {
ABSL_CONST_INIT static absl::base_internal::AtomicHook<void(*)(int)> hook; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
void (*)(int)>
hook;
value = 0; value = 0;
// Test the default DummyFunction. // Test the default DummyFunction.
@ -53,8 +55,9 @@ TEST(AtomicHookTest, NoDefaultFunction) {
TEST(AtomicHookTest, WithDefaultFunction) { TEST(AtomicHookTest, WithDefaultFunction) {
// Set the default value to TestHook at compile-time. // Set the default value to TestHook at compile-time.
ABSL_CONST_INIT static absl::base_internal::AtomicHook<void (*)(int)> hook( ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
TestHook); void (*)(int)>
hook(TestHook);
value = 0; value = 0;
// Test the default value is TestHook. // Test the default value is TestHook.

@ -21,7 +21,8 @@ namespace absl {
ABSL_NAMESPACE_BEGIN ABSL_NAMESPACE_BEGIN
namespace atomic_hook_internal { namespace atomic_hook_internal {
ABSL_CONST_INIT absl::base_internal::AtomicHook<VoidF> func(DefaultFunc); ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<VoidF>
func(DefaultFunc);
ABSL_CONST_INIT int default_func_calls = 0; ABSL_CONST_INIT int default_func_calls = 0;
void DefaultFunc() { default_func_calls++; } void DefaultFunc() { default_func_calls++; }
void RegisterFunc(VoidF f) { func.Store(f); } void RegisterFunc(VoidF f) { func.Store(f); }

@ -71,10 +71,12 @@
// Explicitly #error out when not ABSL_LOW_LEVEL_WRITE_SUPPORTED, except for a // Explicitly #error out when not ABSL_LOW_LEVEL_WRITE_SUPPORTED, except for a
// whitelisted set of platforms for which we expect not to be able to raw log. // whitelisted set of platforms for which we expect not to be able to raw log.
ABSL_CONST_INIT static absl::base_internal::AtomicHook< ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
absl::raw_logging_internal::LogPrefixHook> log_prefix_hook; absl::raw_logging_internal::LogPrefixHook>
ABSL_CONST_INIT static absl::base_internal::AtomicHook< log_prefix_hook;
absl::raw_logging_internal::AbortHook> abort_hook; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static absl::base_internal::AtomicHook<
absl::raw_logging_internal::AbortHook>
abort_hook;
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED #ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
static const char kTruncated[] = " ... (message truncated)\n"; static const char kTruncated[] = " ... (message truncated)\n";
@ -225,7 +227,7 @@ bool RawLoggingFullySupported() {
#endif // !ABSL_LOW_LEVEL_WRITE_SUPPORTED #endif // !ABSL_LOW_LEVEL_WRITE_SUPPORTED
} }
ABSL_CONST_INIT ABSL_DLL ABSL_DLL ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
absl::base_internal::AtomicHook<InternalLogFunction> absl::base_internal::AtomicHook<InternalLogFunction>
internal_log_function(DefaultInternalLog); internal_log_function(DefaultInternalLog);

@ -170,7 +170,8 @@ using InternalLogFunction = void (*)(absl::LogSeverity severity,
const char* file, int line, const char* file, int line,
const std::string& message); const std::string& message);
ABSL_DLL extern base_internal::AtomicHook<InternalLogFunction> ABSL_DLL ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES extern base_internal::AtomicHook<
InternalLogFunction>
internal_log_function; internal_log_function;
void RegisterInternalLogFunction(InternalLogFunction func); void RegisterInternalLogFunction(InternalLogFunction func);

@ -57,8 +57,8 @@ namespace absl {
ABSL_NAMESPACE_BEGIN ABSL_NAMESPACE_BEGIN
namespace base_internal { namespace base_internal {
ABSL_CONST_INIT static base_internal::AtomicHook<void (*)(const void *lock, ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES static base_internal::AtomicHook<void (*)(
int64_t wait_cycles)> const void *lock, int64_t wait_cycles)>
submit_profile_data; submit_profile_data;
void RegisterSpinLockProfiler(void (*fn)(const void *contendedlock, void RegisterSpinLockProfiler(void (*fn)(const void *contendedlock,

@ -403,8 +403,9 @@ class btree_node {
// // TODO(ezb): right now, `start` is always 0. Update insertion/merge // // TODO(ezb): right now, `start` is always 0. Update insertion/merge
// // logic to allow for floating storage within nodes. // // logic to allow for floating storage within nodes.
// field_type start; // field_type start;
// // The count of the number of populated values in the node. // // The index after the last populated value in `values`. Currently, this
// field_type count; // // is the same as the count of values.
// field_type finish;
// // The maximum number of values the node can hold. This is an integer in // // The maximum number of values the node can hold. This is an integer in
// // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
// // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
@ -415,7 +416,7 @@ class btree_node {
// //
// // The array of values. The capacity is `max_count` for leaf nodes and // // The array of values. The capacity is `max_count` for leaf nodes and
// // kNodeValues for internal nodes. Only the values in // // kNodeValues for internal nodes. Only the values in
// // [start, start + count) have been initialized and are valid. // // [start, finish) have been initialized and are valid.
// slot_type values[max_count]; // slot_type values[max_count];
// //
// // The array of child pointers. The keys in children[i] are all less // // The array of child pointers. The keys in children[i] are all less
@ -446,7 +447,7 @@ class btree_node {
slot_type, btree_node *>; slot_type, btree_node *>;
constexpr static size_type SizeWithNValues(size_type n) { constexpr static size_type SizeWithNValues(size_type n) {
return layout_type(/*parent*/ 1, return layout_type(/*parent*/ 1,
/*position, start, count, max_count*/ 4, /*position, start, finish, max_count*/ 4,
/*values*/ n, /*values*/ n,
/*children*/ 0) /*children*/ 0)
.AllocSize(); .AllocSize();
@ -483,13 +484,13 @@ class btree_node {
// Leaves can have less than kNodeValues values. // Leaves can have less than kNodeValues values.
constexpr static layout_type LeafLayout(const int max_values = kNodeValues) { constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
return layout_type(/*parent*/ 1, return layout_type(/*parent*/ 1,
/*position, start, count, max_count*/ 4, /*position, start, finish, max_count*/ 4,
/*values*/ max_values, /*values*/ max_values,
/*children*/ 0); /*children*/ 0);
} }
constexpr static layout_type InternalLayout() { constexpr static layout_type InternalLayout() {
return layout_type(/*parent*/ 1, return layout_type(/*parent*/ 1,
/*position, start, count, max_count*/ 4, /*position, start, finish, max_count*/ 4,
/*values*/ kNodeValues, /*values*/ kNodeValues,
/*children*/ kNodeValues + 1); /*children*/ kNodeValues + 1);
} }
@ -515,12 +516,14 @@ class btree_node {
reinterpret_cast<const char *>(this)); reinterpret_cast<const char *>(this));
} }
void set_parent(btree_node *p) { *GetField<0>() = p; } void set_parent(btree_node *p) { *GetField<0>() = p; }
field_type &mutable_count() { return GetField<1>()[2]; } field_type &mutable_finish() { return GetField<1>()[2]; }
slot_type *slot(int i) { return &GetField<2>()[i]; } slot_type *slot(int i) { return &GetField<2>()[i]; }
slot_type *start_slot() { return slot(start()); }
slot_type *finish_slot() { return slot(finish()); }
const slot_type *slot(int i) const { return &GetField<2>()[i]; } const slot_type *slot(int i) const { return &GetField<2>()[i]; }
void set_position(field_type v) { GetField<1>()[0] = v; } void set_position(field_type v) { GetField<1>()[0] = v; }
void set_start(field_type v) { GetField<1>()[1] = v; } void set_start(field_type v) { GetField<1>()[1] = v; }
void set_count(field_type v) { GetField<1>()[2] = v; } void set_finish(field_type v) { GetField<1>()[2] = v; }
// This method is only called by the node init methods. // This method is only called by the node init methods.
void set_max_count(field_type v) { GetField<1>()[3] = v; } void set_max_count(field_type v) { GetField<1>()[3] = v; }
@ -533,10 +536,20 @@ class btree_node {
field_type position() const { return GetField<1>()[0]; } field_type position() const { return GetField<1>()[0]; }
// Getter for the offset of the first value in the `values` array. // Getter for the offset of the first value in the `values` array.
field_type start() const { return GetField<1>()[1]; } field_type start() const {
// TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
assert(GetField<1>()[1] == 0);
return 0;
}
// Getter for the offset after the last value in the `values` array.
field_type finish() const { return GetField<1>()[2]; }
// Getters for the number of values stored in this node. // Getters for the number of values stored in this node.
field_type count() const { return GetField<1>()[2]; } field_type count() const {
assert(finish() >= start());
return finish() - start();
}
field_type max_count() const { field_type max_count() const {
// Internal nodes have max_count==kInternalNodeMaxCount. // Internal nodes have max_count==kInternalNodeMaxCount.
// Leaf nodes have max_count in [1, kNodeValues]. // Leaf nodes have max_count in [1, kNodeValues].
@ -564,6 +577,7 @@ class btree_node {
// Getters/setter for the child at position i in the node. // Getters/setter for the child at position i in the node.
btree_node *child(int i) const { return GetField<3>()[i]; } btree_node *child(int i) const { return GetField<3>()[i]; }
btree_node *start_child() const { return child(start()); }
btree_node *&mutable_child(int i) { return GetField<3>()[i]; } btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
void clear_child(int i) { void clear_child(int i) {
absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
@ -596,14 +610,14 @@ class btree_node {
template <typename K, typename Compare> template <typename K, typename Compare>
SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
linear_search(const K &k, const Compare &comp) const { linear_search(const K &k, const Compare &comp) const {
return linear_search_impl(k, 0, count(), comp, return linear_search_impl(k, start(), finish(), comp,
btree_is_key_compare_to<Compare, key_type>()); btree_is_key_compare_to<Compare, key_type>());
} }
template <typename K, typename Compare> template <typename K, typename Compare>
SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
binary_search(const K &k, const Compare &comp) const { binary_search(const K &k, const Compare &comp) const {
return binary_search_impl(k, 0, count(), comp, return binary_search_impl(k, start(), finish(), comp,
btree_is_key_compare_to<Compare, key_type>()); btree_is_key_compare_to<Compare, key_type>());
} }
@ -733,10 +747,10 @@ class btree_node {
n->set_parent(parent); n->set_parent(parent);
n->set_position(0); n->set_position(0);
n->set_start(0); n->set_start(0);
n->set_count(0); n->set_finish(0);
n->set_max_count(max_count); n->set_max_count(max_count);
absl::container_internal::SanitizerPoisonMemoryRegion( absl::container_internal::SanitizerPoisonMemoryRegion(
n->slot(0), max_count * sizeof(slot_type)); n->start_slot(), max_count * sizeof(slot_type));
return n; return n;
} }
static btree_node *init_internal(btree_node *n, btree_node *parent) { static btree_node *init_internal(btree_node *n, btree_node *parent) {
@ -745,11 +759,12 @@ class btree_node {
// internal. // internal.
n->set_max_count(kInternalNodeMaxCount); n->set_max_count(kInternalNodeMaxCount);
absl::container_internal::SanitizerPoisonMemoryRegion( absl::container_internal::SanitizerPoisonMemoryRegion(
&n->mutable_child(0), (kNodeValues + 1) * sizeof(btree_node *)); &n->mutable_child(n->start()),
(kNodeValues + 1) * sizeof(btree_node *));
return n; return n;
} }
void destroy(allocator_type *alloc) { void destroy(allocator_type *alloc) {
for (int i = 0; i < count(); ++i) { for (int i = start(); i < finish(); ++i) {
value_destroy(i, alloc); value_destroy(i, alloc);
} }
} }
@ -829,6 +844,7 @@ struct btree_iterator {
using iterator_category = std::bidirectional_iterator_tag; using iterator_category = std::bidirectional_iterator_tag;
btree_iterator() : node(nullptr), position(-1) {} btree_iterator() : node(nullptr), position(-1) {}
explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
btree_iterator(Node *n, int p) : node(n), position(p) {} btree_iterator(Node *n, int p) : node(n), position(p) {}
// NOTE: this SFINAE allows for implicit conversions from iterator to // NOTE: this SFINAE allows for implicit conversions from iterator to
@ -858,7 +874,7 @@ struct btree_iterator {
// Increment/decrement the iterator. // Increment/decrement the iterator.
void increment() { void increment() {
if (node->leaf() && ++position < node->count()) { if (node->leaf() && ++position < node->finish()) {
return; return;
} }
increment_slow(); increment_slow();
@ -866,7 +882,7 @@ struct btree_iterator {
void increment_slow(); void increment_slow();
void decrement() { void decrement() {
if (node->leaf() && --position >= 0) { if (node->leaf() && --position >= node->start()) {
return; return;
} }
decrement_slow(); decrement_slow();
@ -942,7 +958,7 @@ class btree {
node_type *parent; node_type *parent;
field_type position = 0; field_type position = 0;
field_type start = 0; field_type start = 0;
field_type count = 0; field_type finish = 0;
// max_count must be != kInternalNodeMaxCount (so that this node is regarded // max_count must be != kInternalNodeMaxCount (so that this node is regarded
// as a leaf node). max_count() is never called when the tree is empty. // as a leaf node). max_count() is never called when the tree is empty.
field_type max_count = node_type::kInternalNodeMaxCount + 1; field_type max_count = node_type::kInternalNodeMaxCount + 1;
@ -1047,11 +1063,11 @@ class btree {
btree &operator=(const btree &x); btree &operator=(const btree &x);
btree &operator=(btree &&x) noexcept; btree &operator=(btree &&x) noexcept;
iterator begin() { return iterator(leftmost(), 0); } iterator begin() { return iterator(leftmost()); }
const_iterator begin() const { return const_iterator(leftmost(), 0); } const_iterator begin() const { return const_iterator(leftmost()); }
iterator end() { return iterator(rightmost_, rightmost_->count()); } iterator end() { return iterator(rightmost_, rightmost_->finish()); }
const_iterator end() const { const_iterator end() const {
return const_iterator(rightmost_, rightmost_->count()); return const_iterator(rightmost_, rightmost_->finish());
} }
reverse_iterator rbegin() { return reverse_iterator(end()); } reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { const_reverse_iterator rbegin() const {
@ -1367,9 +1383,9 @@ class btree {
iterator internal_emplace(iterator iter, Args &&... args); iterator internal_emplace(iterator iter, Args &&... args);
// Returns an iterator pointing to the first value >= the value "iter" is // Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location as // pointing at. Note that "iter" might be pointing to an invalid location such
// iter.position == iter.node->count(). This routine simply moves iter up in // as iter.position == iter.node->finish(). This routine simply moves iter up
// the tree to a valid location. // in the tree to a valid location.
// Requires: iter.node is non-null. // Requires: iter.node is non-null.
template <typename IterType> template <typename IterType>
static IterType internal_last(IterType iter); static IterType internal_last(IterType iter);
@ -1422,7 +1438,7 @@ class btree {
return node_stats(1, 0); return node_stats(1, 0);
} }
node_stats res(0, 1); node_stats res(0, 1);
for (int i = 0; i <= node->count(); ++i) { for (int i = node->start(); i <= node->finish(); ++i) {
res += internal_stats(node->child(i)); res += internal_stats(node->child(i));
} }
return res; return res;
@ -1456,20 +1472,21 @@ template <typename... Args>
inline void btree_node<P>::emplace_value(const size_type i, inline void btree_node<P>::emplace_value(const size_type i,
allocator_type *alloc, allocator_type *alloc,
Args &&... args) { Args &&... args) {
assert(i <= count()); assert(i >= start());
assert(i <= finish());
// Shift old values to create space for new value and then construct it in // Shift old values to create space for new value and then construct it in
// place. // place.
if (i < count()) { if (i < finish()) {
value_init(count(), alloc, slot(count() - 1)); value_init(finish(), alloc, slot(finish() - 1));
for (size_type j = count() - 1; j > i; --j) for (size_type j = finish() - 1; j > i; --j)
params_type::move(alloc, slot(j - 1), slot(j)); params_type::move(alloc, slot(j - 1), slot(j));
value_destroy(i, alloc); value_destroy(i, alloc);
} }
value_init(i, alloc, std::forward<Args>(args)...); value_init(i, alloc, std::forward<Args>(args)...);
set_count(count() + 1); set_finish(finish() + 1);
if (!leaf() && count() > i + 1) { if (!leaf() && finish() > i + 1) {
for (int j = count(); j > i + 1; --j) { for (int j = finish(); j > i + 1; --j) {
set_child(j, child(j - 1)); set_child(j, child(j - 1));
} }
clear_child(i + 1); clear_child(i + 1);
@ -1478,12 +1495,12 @@ inline void btree_node<P>::emplace_value(const size_type i,
template <typename P> template <typename P>
inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) { inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
if (!leaf() && count() > i + 1) { if (!leaf() && finish() > i + 1) {
assert(child(i + 1)->count() == 0); assert(child(i + 1)->count() == 0);
for (size_type j = i + 1; j < count(); ++j) { for (size_type j = i + 1; j < finish(); ++j) {
set_child(j, child(j + 1)); set_child(j, child(j + 1));
} }
clear_child(count()); clear_child(finish());
} }
remove_values_ignore_children(i, /*to_erase=*/1, alloc); remove_values_ignore_children(i, /*to_erase=*/1, alloc);
@ -1492,9 +1509,9 @@ inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
template <typename P> template <typename P>
inline void btree_node<P>::remove_values_ignore_children( inline void btree_node<P>::remove_values_ignore_children(
const int i, const int to_erase, allocator_type *alloc) { const int i, const int to_erase, allocator_type *alloc) {
params_type::move(alloc, slot(i + to_erase), slot(count()), slot(i)); params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i));
value_destroy_n(count() - to_erase, to_erase, alloc); value_destroy_n(finish() - to_erase, to_erase, alloc);
set_count(count() - to_erase); set_finish(finish() - to_erase);
} }
template <typename P> template <typename P>
@ -1508,37 +1525,38 @@ void btree_node<P>::rebalance_right_to_left(const int to_move,
assert(to_move <= right->count()); assert(to_move <= right->count());
// 1) Move the delimiting value in the parent to the left node. // 1) Move the delimiting value in the parent to the left node.
value_init(count(), alloc, parent()->slot(position())); value_init(finish(), alloc, parent()->slot(position()));
// 2) Move the (to_move - 1) values from the right node to the left node. // 2) Move the (to_move - 1) values from the right node to the left node.
right->uninitialized_move_n(to_move - 1, 0, count() + 1, this, alloc); right->uninitialized_move_n(to_move - 1, right->start(), finish() + 1, this,
alloc);
// 3) Move the new delimiting value to the parent from the right node. // 3) Move the new delimiting value to the parent from the right node.
params_type::move(alloc, right->slot(to_move - 1), params_type::move(alloc, right->slot(to_move - 1),
parent()->slot(position())); parent()->slot(position()));
// 4) Shift the values in the right node to their correct position. // 4) Shift the values in the right node to their correct position.
params_type::move(alloc, right->slot(to_move), right->slot(right->count()), params_type::move(alloc, right->slot(to_move), right->finish_slot(),
right->slot(0)); right->start_slot());
// 5) Destroy the now-empty to_move entries in the right node. // 5) Destroy the now-empty to_move entries in the right node.
right->value_destroy_n(right->count() - to_move, to_move, alloc); right->value_destroy_n(right->finish() - to_move, to_move, alloc);
if (!leaf()) { if (!leaf()) {
// Move the child pointers from the right to the left node. // Move the child pointers from the right to the left node.
for (int i = 0; i < to_move; ++i) { for (int i = 0; i < to_move; ++i) {
init_child(count() + i + 1, right->child(i)); init_child(finish() + i + 1, right->child(i));
} }
for (int i = 0; i <= right->count() - to_move; ++i) { for (int i = right->start(); i <= right->finish() - to_move; ++i) {
assert(i + to_move <= right->max_count()); assert(i + to_move <= right->max_count());
right->init_child(i, right->child(i + to_move)); right->init_child(i, right->child(i + to_move));
right->clear_child(i + to_move); right->clear_child(i + to_move);
} }
} }
// Fixup the counts on the left and right nodes. // Fixup `finish` on the left and right nodes.
set_count(count() + to_move); set_finish(finish() + to_move);
right->set_count(right->count() - to_move); right->set_finish(right->finish() - to_move);
} }
template <typename P> template <typename P>
@ -1562,11 +1580,11 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
// the new to_move entries from the parent and left node. // the new to_move entries from the parent and left node.
// 1) Shift existing values in the right node to their correct positions. // 1) Shift existing values in the right node to their correct positions.
right->uninitialized_move_n(to_move, right->count() - to_move, right->uninitialized_move_n(to_move, right->finish() - to_move,
right->count(), right, alloc); right->finish(), right, alloc);
for (slot_type *src = right->slot(right->count() - to_move - 1), for (slot_type *src = right->slot(right->finish() - to_move - 1),
*dest = right->slot(right->count() - 1), *dest = right->slot(right->finish() - 1),
*end = right->slot(0); *end = right->start_slot();
src >= end; --src, --dest) { src >= end; --src, --dest) {
params_type::move(alloc, src, dest); params_type::move(alloc, src, dest);
} }
@ -1576,14 +1594,15 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
right->slot(to_move - 1)); right->slot(to_move - 1));
// 3) Move the (to_move - 1) values from the left node to the right node. // 3) Move the (to_move - 1) values from the left node to the right node.
params_type::move(alloc, slot(count() - (to_move - 1)), slot(count()), params_type::move(alloc, slot(finish() - (to_move - 1)), finish_slot(),
right->slot(0)); right->start_slot());
} else { } else {
// The right node does not have enough initialized space to hold the new // The right node does not have enough initialized space to hold the new
// to_move entries, so part of them will move to uninitialized space. // to_move entries, so part of them will move to uninitialized space.
// 1) Shift existing values in the right node to their correct positions. // 1) Shift existing values in the right node to their correct positions.
right->uninitialized_move_n(right->count(), 0, to_move, right, alloc); right->uninitialized_move_n(right->count(), right->start(),
right->start() + to_move, right, alloc);
// 2) Move the delimiting value in the parent to the right node. // 2) Move the delimiting value in the parent to the right node.
right->value_init(to_move - 1, alloc, parent()->slot(position())); right->value_init(to_move - 1, alloc, parent()->slot(position()));
@ -1591,33 +1610,35 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
// 3) Move the (to_move - 1) values from the left node to the right node. // 3) Move the (to_move - 1) values from the left node to the right node.
const size_type uninitialized_remaining = to_move - right->count() - 1; const size_type uninitialized_remaining = to_move - right->count() - 1;
uninitialized_move_n(uninitialized_remaining, uninitialized_move_n(uninitialized_remaining,
count() - uninitialized_remaining, right->count(), finish() - uninitialized_remaining, right->finish(),
right, alloc); right, alloc);
params_type::move(alloc, slot(count() - (to_move - 1)), params_type::move(alloc, slot(finish() - (to_move - 1)),
slot(count() - uninitialized_remaining), right->slot(0)); slot(finish() - uninitialized_remaining),
right->start_slot());
} }
// 4) Move the new delimiting value to the parent from the left node. // 4) Move the new delimiting value to the parent from the left node.
params_type::move(alloc, slot(count() - to_move), parent()->slot(position())); params_type::move(alloc, slot(finish() - to_move),
parent()->slot(position()));
// 5) Destroy the now-empty to_move entries in the left node. // 5) Destroy the now-empty to_move entries in the left node.
value_destroy_n(count() - to_move, to_move, alloc); value_destroy_n(finish() - to_move, to_move, alloc);
if (!leaf()) { if (!leaf()) {
// Move the child pointers from the left to the right node. // Move the child pointers from the left to the right node.
for (int i = right->count(); i >= 0; --i) { for (int i = right->finish(); i >= right->start(); --i) {
right->init_child(i + to_move, right->child(i)); right->init_child(i + to_move, right->child(i));
right->clear_child(i); right->clear_child(i);
} }
for (int i = 1; i <= to_move; ++i) { for (int i = 1; i <= to_move; ++i) {
right->init_child(i - 1, child(count() - to_move + i)); right->init_child(i - 1, child(finish() - to_move + i));
clear_child(count() - to_move + i); clear_child(finish() - to_move + i);
} }
} }
// Fixup the counts on the left and right nodes. // Fixup the counts on the left and right nodes.
set_count(count() - to_move); set_finish(finish() - to_move);
right->set_count(right->count() + to_move); right->set_finish(right->finish() + to_move);
} }
template <typename P> template <typename P>
@ -1630,33 +1651,34 @@ void btree_node<P>::split(const int insert_position, btree_node *dest,
// inserting at the beginning of the left node then bias the split to put // inserting at the beginning of the left node then bias the split to put
// more values on the right node. If we're inserting at the end of the // more values on the right node. If we're inserting at the end of the
// right node then bias the split to put more values on the left node. // right node then bias the split to put more values on the left node.
if (insert_position == 0) { if (insert_position == start()) {
dest->set_count(count() - 1); dest->set_finish(dest->start() + finish() - 1);
} else if (insert_position == kNodeValues) { } else if (insert_position == kNodeValues) {
dest->set_count(0); dest->set_finish(dest->start());
} else { } else {
dest->set_count(count() / 2); dest->set_finish(dest->start() + count() / 2);
} }
set_count(count() - dest->count()); set_finish(finish() - dest->count());
assert(count() >= 1); assert(count() >= 1);
// Move values from the left sibling to the right sibling. // Move values from the left sibling to the right sibling.
uninitialized_move_n(dest->count(), count(), 0, dest, alloc); uninitialized_move_n(dest->count(), finish(), dest->start(), dest, alloc);
// Destroy the now-empty entries in the left node. // Destroy the now-empty entries in the left node.
value_destroy_n(count(), dest->count(), alloc); value_destroy_n(finish(), dest->count(), alloc);
// The split key is the largest value in the left sibling. // The split key is the largest value in the left sibling.
set_count(count() - 1); --mutable_finish();
parent()->emplace_value(position(), alloc, slot(count())); parent()->emplace_value(position(), alloc, finish_slot());
value_destroy(count(), alloc); value_destroy(finish(), alloc);
parent()->init_child(position() + 1, dest); parent()->init_child(position() + 1, dest);
if (!leaf()) { if (!leaf()) {
for (int i = 0; i <= dest->count(); ++i) { for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
assert(child(count() + i + 1) != nullptr); ++i, ++j) {
dest->init_child(i, child(count() + i + 1)); assert(child(j) != nullptr);
clear_child(count() + i + 1); dest->init_child(i, child(j));
clear_child(j);
} }
} }
} }
@ -1667,25 +1689,26 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
assert(position() + 1 == src->position()); assert(position() + 1 == src->position());
// Move the delimiting value to the left node. // Move the delimiting value to the left node.
value_init(count(), alloc, parent()->slot(position())); value_init(finish(), alloc, parent()->slot(position()));
// Move the values from the right to the left node. // Move the values from the right to the left node.
src->uninitialized_move_n(src->count(), 0, count() + 1, this, alloc); src->uninitialized_move_n(src->count(), src->start(), finish() + 1, this,
alloc);
// Destroy the now-empty entries in the right node. // Destroy the now-empty entries in the right node.
src->value_destroy_n(0, src->count(), alloc); src->value_destroy_n(src->start(), src->count(), alloc);
if (!leaf()) { if (!leaf()) {
// Move the child pointers from the right to the left node. // Move the child pointers from the right to the left node.
for (int i = 0; i <= src->count(); ++i) { for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
init_child(count() + i + 1, src->child(i)); init_child(j, src->child(i));
src->clear_child(i); src->clear_child(i);
} }
} }
// Fixup the counts on the src and dest nodes. // Fixup `finish` on the src and dest nodes.
set_count(1 + count() + src->count()); set_finish(start() + 1 + count() + src->count());
src->set_count(0); src->set_finish(src->start());
// Remove the value on the parent node. // Remove the value on the parent node.
parent()->remove_value(position(), alloc); parent()->remove_value(position(), alloc);
@ -1703,38 +1726,40 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
} }
// Swap the values. // Swap the values.
for (slot_type *a = smaller->slot(0), *b = larger->slot(0), for (slot_type *a = smaller->start_slot(), *b = larger->start_slot(),
*end = a + smaller->count(); *end = smaller->finish_slot();
a != end; ++a, ++b) { a != end; ++a, ++b) {
params_type::swap(alloc, a, b); params_type::swap(alloc, a, b);
} }
// Move values that can't be swapped. // Move values that can't be swapped.
const size_type to_move = larger->count() - smaller->count(); const size_type to_move = larger->count() - smaller->count();
larger->uninitialized_move_n(to_move, smaller->count(), smaller->count(), larger->uninitialized_move_n(to_move, smaller->finish(), smaller->finish(),
smaller, alloc); smaller, alloc);
larger->value_destroy_n(smaller->count(), to_move, alloc); larger->value_destroy_n(smaller->finish(), to_move, alloc);
if (!leaf()) { if (!leaf()) {
// Swap the child pointers. // Swap the child pointers.
std::swap_ranges(&smaller->mutable_child(0), std::swap_ranges(&smaller->mutable_child(smaller->start()),
&smaller->mutable_child(smaller->count() + 1), &smaller->mutable_child(smaller->finish() + 1),
&larger->mutable_child(0)); &larger->mutable_child(larger->start()));
// Update swapped children's parent pointers. // Update swapped children's parent pointers.
int i = 0; int i = smaller->start();
for (; i <= smaller->count(); ++i) { int j = larger->start();
for (; i <= smaller->finish(); ++i, ++j) {
smaller->child(i)->set_parent(smaller); smaller->child(i)->set_parent(smaller);
larger->child(i)->set_parent(larger); larger->child(j)->set_parent(larger);
} }
// Move the child pointers that couldn't be swapped. // Move the child pointers that couldn't be swapped.
for (; i <= larger->count(); ++i) { for (; j <= larger->finish(); ++i, ++j) {
smaller->init_child(i, larger->child(i)); smaller->init_child(i, larger->child(j));
larger->clear_child(i); larger->clear_child(j);
} }
} }
// Swap the counts. // Swap the `finish`s.
swap(mutable_count(), x->mutable_count()); // TODO(ezb): with floating storage, will also need to swap starts.
swap(mutable_finish(), x->mutable_finish());
} }
//// ////
@ -1742,23 +1767,23 @@ void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
template <typename N, typename R, typename P> template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_slow() { void btree_iterator<N, R, P>::increment_slow() {
if (node->leaf()) { if (node->leaf()) {
assert(position >= node->count()); assert(position >= node->finish());
btree_iterator save(*this); btree_iterator save(*this);
while (position == node->count() && !node->is_root()) { while (position == node->finish() && !node->is_root()) {
assert(node->parent()->child(node->position()) == node); assert(node->parent()->child(node->position()) == node);
position = node->position(); position = node->position();
node = node->parent(); node = node->parent();
} }
if (position == node->count()) { if (position == node->finish()) {
*this = save; *this = save;
} }
} else { } else {
assert(position < node->count()); assert(position < node->finish());
node = node->child(position + 1); node = node->child(position + 1);
while (!node->leaf()) { while (!node->leaf()) {
node = node->child(0); node = node->start_child();
} }
position = 0; position = node->start();
} }
} }
@ -1767,21 +1792,21 @@ void btree_iterator<N, R, P>::decrement_slow() {
if (node->leaf()) { if (node->leaf()) {
assert(position <= -1); assert(position <= -1);
btree_iterator save(*this); btree_iterator save(*this);
while (position < 0 && !node->is_root()) { while (position < node->start() && !node->is_root()) {
assert(node->parent()->child(node->position()) == node); assert(node->parent()->child(node->position()) == node);
position = node->position() - 1; position = node->position() - 1;
node = node->parent(); node = node->parent();
} }
if (position < 0) { if (position < node->start()) {
*this = save; *this = save;
} }
} else { } else {
assert(position >= 0); assert(position >= node->start());
node = node->child(position); node = node->child(position);
while (!node->leaf()) { while (!node->leaf()) {
node = node->child(node->count()); node = node->child(node->finish());
} }
position = node->count() - 1; position = node->finish() - 1;
} }
} }
@ -2068,8 +2093,8 @@ auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
// Adjust our return value. If we're pointing at the end of a node, advance // Adjust our return value. If we're pointing at the end of a node, advance
// the iterator. // the iterator.
if (res.position == res.node->count()) { if (res.position == res.node->finish()) {
res.position = res.node->count() - 1; res.position = res.node->finish() - 1;
++res; ++res;
} }
@ -2101,7 +2126,7 @@ auto btree<P>::erase_range(iterator begin, iterator end)
while (size_ > target_size) { while (size_ > target_size) {
if (begin.node->leaf()) { if (begin.node->leaf()) {
const size_type remaining_to_erase = size_ - target_size; const size_type remaining_to_erase = size_ - target_size;
const size_type remaining_in_node = begin.node->count() - begin.position; const size_type remaining_in_node = begin.node->finish() - begin.position;
begin = erase_from_leaf_node( begin = erase_from_leaf_node(
begin, (std::min)(remaining_to_erase, remaining_in_node)); begin, (std::min)(remaining_to_erase, remaining_in_node));
} else { } else {
@ -2124,7 +2149,8 @@ void btree<P>::erase_same_node(iterator begin, iterator end) {
internal_clear(node->child(begin.position + i + 1)); internal_clear(node->child(begin.position + i + 1));
} }
// Rotate children after end into new positions. // Rotate children after end into new positions.
for (size_type i = begin.position + to_erase + 1; i <= node->count(); ++i) { for (size_type i = begin.position + to_erase + 1; i <= node->finish();
++i) {
node->set_child(i - to_erase, node->child(i)); node->set_child(i - to_erase, node->child(i));
node->clear_child(i); node->clear_child(i);
} }
@ -2144,8 +2170,8 @@ auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase)
-> iterator { -> iterator {
node_type *node = begin.node; node_type *node = begin.node;
assert(node->leaf()); assert(node->leaf());
assert(node->count() > begin.position); assert(node->finish() > begin.position);
assert(begin.position + to_erase <= node->count()); assert(begin.position + to_erase <= node->finish());
node->remove_values_ignore_children(begin.position, to_erase, node->remove_values_ignore_children(begin.position, to_erase,
mutable_allocator()); mutable_allocator());
@ -2214,7 +2240,7 @@ void btree<P>::verify() const {
assert(rightmost_ != nullptr); assert(rightmost_ != nullptr);
assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
assert(leftmost() == (++const_iterator(root(), -1)).node); assert(leftmost() == (++const_iterator(root(), -1)).node);
assert(rightmost_ == (--const_iterator(root(), root()->count())).node); assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
assert(leftmost()->leaf()); assert(leftmost()->leaf());
assert(rightmost_->leaf()); assert(rightmost_->leaf());
} }
@ -2229,7 +2255,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
// First try to make room on the node by rebalancing. // First try to make room on the node by rebalancing.
node_type *parent = node->parent(); node_type *parent = node->parent();
if (node != root()) { if (node != root()) {
if (node->position() > 0) { if (node->position() > parent->start()) {
// Try rebalancing with our left sibling. // Try rebalancing with our left sibling.
node_type *left = parent->child(node->position() - 1); node_type *left = parent->child(node->position() - 1);
assert(left->max_count() == kNodeValues); assert(left->max_count() == kNodeValues);
@ -2241,13 +2267,13 @@ void btree<P>::rebalance_or_split(iterator *iter) {
(1 + (insert_position < kNodeValues)); (1 + (insert_position < kNodeValues));
to_move = (std::max)(1, to_move); to_move = (std::max)(1, to_move);
if (((insert_position - to_move) >= 0) || if (insert_position - to_move >= node->start() ||
((left->count() + to_move) < kNodeValues)) { left->count() + to_move < kNodeValues) {
left->rebalance_right_to_left(to_move, node, mutable_allocator()); left->rebalance_right_to_left(to_move, node, mutable_allocator());
assert(node->max_count() - node->count() == to_move); assert(node->max_count() - node->count() == to_move);
insert_position = insert_position - to_move; insert_position = insert_position - to_move;
if (insert_position < 0) { if (insert_position < node->start()) {
insert_position = insert_position + left->count() + 1; insert_position = insert_position + left->count() + 1;
node = left; node = left;
} }
@ -2258,7 +2284,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
} }
} }
if (node->position() < parent->count()) { if (node->position() < parent->finish()) {
// Try rebalancing with our right sibling. // Try rebalancing with our right sibling.
node_type *right = parent->child(node->position() + 1); node_type *right = parent->child(node->position() + 1);
assert(right->max_count() == kNodeValues); assert(right->max_count() == kNodeValues);
@ -2266,15 +2292,15 @@ void btree<P>::rebalance_or_split(iterator *iter) {
// We bias rebalancing based on the position being inserted. If we're // We bias rebalancing based on the position being inserted. If we're
// inserting at the beginning of the left node then we bias rebalancing // inserting at the beginning of the left node then we bias rebalancing
// to fill up the right node. // to fill up the right node.
int to_move = int to_move = (kNodeValues - right->count()) /
(kNodeValues - right->count()) / (1 + (insert_position > 0)); (1 + (insert_position > node->start()));
to_move = (std::max)(1, to_move); to_move = (std::max)(1, to_move);
if ((insert_position <= (node->count() - to_move)) || if (insert_position <= node->finish() - to_move ||
((right->count() + to_move) < kNodeValues)) { right->count() + to_move < kNodeValues) {
node->rebalance_left_to_right(to_move, right, mutable_allocator()); node->rebalance_left_to_right(to_move, right, mutable_allocator());
if (insert_position > node->count()) { if (insert_position > node->finish()) {
insert_position = insert_position - node->count() - 1; insert_position = insert_position - node->count() - 1;
node = right; node = right;
} }
@ -2297,10 +2323,11 @@ void btree<P>::rebalance_or_split(iterator *iter) {
// Create a new root node and set the current root node as the child of the // Create a new root node and set the current root node as the child of the
// new root. // new root.
parent = new_internal_node(parent); parent = new_internal_node(parent);
parent->init_child(0, root()); parent->init_child(parent->start(), root());
mutable_root() = parent; mutable_root() = parent;
// If the former root was a leaf node, then it's now the rightmost node. // If the former root was a leaf node, then it's now the rightmost node.
assert(!parent->child(0)->leaf() || parent->child(0) == rightmost_); assert(!parent->start_child()->leaf() ||
parent->start_child() == rightmost_);
} }
// Split the node. // Split the node.
@ -2314,7 +2341,7 @@ void btree<P>::rebalance_or_split(iterator *iter) {
node->split(insert_position, split_node, mutable_allocator()); node->split(insert_position, split_node, mutable_allocator());
} }
if (insert_position > node->count()) { if (insert_position > node->finish()) {
insert_position = insert_position - node->count() - 1; insert_position = insert_position - node->count() - 1;
node = split_node; node = split_node;
} }
@ -2334,22 +2361,22 @@ void btree<P>::merge_nodes(node_type *left, node_type *right) {
template <typename P> template <typename P>
bool btree<P>::try_merge_or_rebalance(iterator *iter) { bool btree<P>::try_merge_or_rebalance(iterator *iter) {
node_type *parent = iter->node->parent(); node_type *parent = iter->node->parent();
if (iter->node->position() > 0) { if (iter->node->position() > parent->start()) {
// Try merging with our left sibling. // Try merging with our left sibling.
node_type *left = parent->child(iter->node->position() - 1); node_type *left = parent->child(iter->node->position() - 1);
assert(left->max_count() == kNodeValues); assert(left->max_count() == kNodeValues);
if ((1 + left->count() + iter->node->count()) <= kNodeValues) { if (1 + left->count() + iter->node->count() <= kNodeValues) {
iter->position += 1 + left->count(); iter->position += 1 + left->count();
merge_nodes(left, iter->node); merge_nodes(left, iter->node);
iter->node = left; iter->node = left;
return true; return true;
} }
} }
if (iter->node->position() < parent->count()) { if (iter->node->position() < parent->finish()) {
// Try merging with our right sibling. // Try merging with our right sibling.
node_type *right = parent->child(iter->node->position() + 1); node_type *right = parent->child(iter->node->position() + 1);
assert(right->max_count() == kNodeValues); assert(right->max_count() == kNodeValues);
if ((1 + iter->node->count() + right->count()) <= kNodeValues) { if (1 + iter->node->count() + right->count() <= kNodeValues) {
merge_nodes(iter->node, right); merge_nodes(iter->node, right);
return true; return true;
} }
@ -2357,23 +2384,22 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) {
// we deleted the first element from iter->node and the node is not // we deleted the first element from iter->node and the node is not
// empty. This is a small optimization for the common pattern of deleting // empty. This is a small optimization for the common pattern of deleting
// from the front of the tree. // from the front of the tree.
if ((right->count() > kMinNodeValues) && if (right->count() > kMinNodeValues &&
((iter->node->count() == 0) || (iter->position > 0))) { (iter->node->count() == 0 || iter->position > iter->node->start())) {
int to_move = (right->count() - iter->node->count()) / 2; int to_move = (right->count() - iter->node->count()) / 2;
to_move = (std::min)(to_move, right->count() - 1); to_move = (std::min)(to_move, right->count() - 1);
iter->node->rebalance_right_to_left(to_move, right, mutable_allocator()); iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
return false; return false;
} }
} }
if (iter->node->position() > 0) { if (iter->node->position() > parent->start()) {
// Try rebalancing with our left sibling. We don't perform rebalancing if // Try rebalancing with our left sibling. We don't perform rebalancing if
// we deleted the last element from iter->node and the node is not // we deleted the last element from iter->node and the node is not
// empty. This is a small optimization for the common pattern of deleting // empty. This is a small optimization for the common pattern of deleting
// from the back of the tree. // from the back of the tree.
node_type *left = parent->child(iter->node->position() - 1); node_type *left = parent->child(iter->node->position() - 1);
if ((left->count() > kMinNodeValues) && if (left->count() > kMinNodeValues &&
((iter->node->count() == 0) || (iter->node->count() == 0 || iter->position < iter->node->finish())) {
(iter->position < iter->node->count()))) {
int to_move = (left->count() - iter->node->count()) / 2; int to_move = (left->count() - iter->node->count()) / 2;
to_move = (std::min)(to_move, left->count() - 1); to_move = (std::min)(to_move, left->count() - 1);
left->rebalance_left_to_right(to_move, iter->node, mutable_allocator()); left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
@ -2396,7 +2422,7 @@ void btree<P>::try_shrink() {
mutable_root() = EmptyNode(); mutable_root() = EmptyNode();
rightmost_ = EmptyNode(); rightmost_ = EmptyNode();
} else { } else {
node_type *child = root()->child(0); node_type *child = root()->start_child();
child->make_root(); child->make_root();
delete_internal_node(root()); delete_internal_node(root());
mutable_root() = child; mutable_root() = child;
@ -2407,7 +2433,7 @@ template <typename P>
template <typename IterType> template <typename IterType>
inline IterType btree<P>::internal_last(IterType iter) { inline IterType btree<P>::internal_last(IterType iter) {
assert(iter.node != nullptr); assert(iter.node != nullptr);
while (iter.position == iter.node->count()) { while (iter.position == iter.node->finish()) {
iter.position = iter.node->position(); iter.position = iter.node->position();
iter.node = iter.node->parent(); iter.node = iter.node->parent();
if (iter.node->leaf()) { if (iter.node->leaf()) {
@ -2463,7 +2489,7 @@ template <typename K>
inline auto btree<P>::internal_locate_impl( inline auto btree<P>::internal_locate_impl(
const K &key, std::false_type /* IsCompareTo */) const const K &key, std::false_type /* IsCompareTo */) const
-> SearchResult<iterator, false> { -> SearchResult<iterator, false> {
iterator iter(const_cast<node_type *>(root()), 0); iterator iter(const_cast<node_type *>(root()));
for (;;) { for (;;) {
iter.position = iter.node->lower_bound(key, key_comp()).value; iter.position = iter.node->lower_bound(key, key_comp()).value;
// NOTE: we don't need to walk all the way down the tree if the keys are // NOTE: we don't need to walk all the way down the tree if the keys are
@ -2483,7 +2509,7 @@ template <typename K>
inline auto btree<P>::internal_locate_impl( inline auto btree<P>::internal_locate_impl(
const K &key, std::true_type /* IsCompareTo */) const const K &key, std::true_type /* IsCompareTo */) const
-> SearchResult<iterator, true> { -> SearchResult<iterator, true> {
iterator iter(const_cast<node_type *>(root()), 0); iterator iter(const_cast<node_type *>(root()));
for (;;) { for (;;) {
SearchResult<int, true> res = iter.node->lower_bound(key, key_comp()); SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
iter.position = res.value; iter.position = res.value;
@ -2501,7 +2527,7 @@ inline auto btree<P>::internal_locate_impl(
template <typename P> template <typename P>
template <typename K> template <typename K>
auto btree<P>::internal_lower_bound(const K &key) const -> iterator { auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
iterator iter(const_cast<node_type *>(root()), 0); iterator iter(const_cast<node_type *>(root()));
for (;;) { for (;;) {
iter.position = iter.node->lower_bound(key, key_comp()).value; iter.position = iter.node->lower_bound(key, key_comp()).value;
if (iter.node->leaf()) { if (iter.node->leaf()) {
@ -2515,7 +2541,7 @@ auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
template <typename P> template <typename P>
template <typename K> template <typename K>
auto btree<P>::internal_upper_bound(const K &key) const -> iterator { auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
iterator iter(const_cast<node_type *>(root()), 0); iterator iter(const_cast<node_type *>(root()));
for (;;) { for (;;) {
iter.position = iter.node->upper_bound(key, key_comp()); iter.position = iter.node->upper_bound(key, key_comp());
if (iter.node->leaf()) { if (iter.node->leaf()) {
@ -2546,7 +2572,7 @@ auto btree<P>::internal_find(const K &key) const -> iterator {
template <typename P> template <typename P>
void btree<P>::internal_clear(node_type *node) { void btree<P>::internal_clear(node_type *node) {
if (!node->leaf()) { if (!node->leaf()) {
for (int i = 0; i <= node->count(); ++i) { for (int i = node->start(); i <= node->finish(); ++i) {
internal_clear(node->child(i)); internal_clear(node->child(i));
} }
delete_internal_node(node); delete_internal_node(node);
@ -2561,23 +2587,23 @@ int btree<P>::internal_verify(const node_type *node, const key_type *lo,
assert(node->count() > 0); assert(node->count() > 0);
assert(node->count() <= node->max_count()); assert(node->count() <= node->max_count());
if (lo) { if (lo) {
assert(!compare_keys(node->key(0), *lo)); assert(!compare_keys(node->key(node->start()), *lo));
} }
if (hi) { if (hi) {
assert(!compare_keys(*hi, node->key(node->count() - 1))); assert(!compare_keys(*hi, node->key(node->finish() - 1)));
} }
for (int i = 1; i < node->count(); ++i) { for (int i = node->start() + 1; i < node->finish(); ++i) {
assert(!compare_keys(node->key(i), node->key(i - 1))); assert(!compare_keys(node->key(i), node->key(i - 1)));
} }
int count = node->count(); int count = node->count();
if (!node->leaf()) { if (!node->leaf()) {
for (int i = 0; i <= node->count(); ++i) { for (int i = node->start(); i <= node->finish(); ++i) {
assert(node->child(i) != nullptr); assert(node->child(i) != nullptr);
assert(node->child(i)->parent() == node); assert(node->child(i)->parent() == node);
assert(node->child(i)->position() == i); assert(node->child(i)->position() == i);
count += count += internal_verify(node->child(i),
internal_verify(node->child(i), (i == 0) ? lo : &node->key(i - 1), i == node->start() ? lo : &node->key(i - 1),
(i == node->count()) ? hi : &node->key(i)); i == node->finish() ? hi : &node->key(i));
} }
} }
return count; return count;

@ -186,15 +186,17 @@ class Flag {
// //
// // FLAGS_firstname is a Flag of type `std::string` // // FLAGS_firstname is a Flag of type `std::string`
// std::string first_name = absl::GetFlag(FLAGS_firstname); // std::string first_name = absl::GetFlag(FLAGS_firstname);
template <typename T>
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
return flag.Get();
}
#ifndef NDEBUG #ifndef NDEBUG
// We want to validate the type mismatch between type definition and // We want to validate the type mismatch between type definition and
// declaration. The lock-free implementation does not allow us to do it, // declaration. The lock-free implementation does not allow us to do it,
// so in debug builds we always use the slower implementation, which always // so in debug builds we always use the slower implementation, which always
// validates the type. // validates the type.
template <typename T>
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
return flag.Get();
}
// We currently need an external linkage for built-in types because shared // We currently need an external linkage for built-in types because shared
// libraries have different addresses of flags_internal::FlagOps<T> which // libraries have different addresses of flags_internal::FlagOps<T> which
// might cause log spam when checking the same flag type. // might cause log spam when checking the same flag type.
@ -202,29 +204,6 @@ ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag); ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT) ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT)
#undef ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT #undef ABSL_FLAGS_INTERNAL_BUILT_IN_EXPORT
#else
template <typename T,
typename std::enable_if<
!flags_internal::IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
return flag.Get();
}
// Overload for `GetFlag()` for types that support lock-free reads.
template <typename T,
typename std::enable_if<
flags_internal::IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag) {
// T might not be default constructible.
union U {
T value;
U() {}
};
U result;
if (flag.AtomicGet(&result.value)) {
return result.value;
}
return flag.Get();
}
#endif #endif
// SetFlag() // SetFlag()

@ -244,16 +244,32 @@ class FlagImpl {
bool TryParse(void** dst, absl::string_view value, std::string* err) const bool TryParse(void** dst, absl::string_view value, std::string* err) const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
#ifndef NDEBUG
template <typename T> template <typename T>
bool AtomicGet(T* v) const { void Get(T* dst) const {
Read(dst, &flags_internal::FlagOps<T>);
}
#else
template <typename T, typename std::enable_if<
!flags_internal::IsAtomicFlagTypeTrait<T>::value,
int>::type = 0>
void Get(T* dst) const {
Read(dst, &flags_internal::FlagOps<T>);
}
// Overload for `GetFlag()` for types that support lock-free reads.
template <typename T,
typename std::enable_if<
flags_internal::IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
void Get(T* dst) const {
using U = flags_internal::BestAtomicType<T>; using U = flags_internal::BestAtomicType<T>;
const typename U::type r = atomics_.template load<T>(); const typename U::type r = atomics_.template load<T>();
if (r != U::AtomicInit()) { if (r != U::AtomicInit()) {
std::memcpy(static_cast<void*>(v), &r, sizeof(T)); std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
return true; } else {
Read(dst, &flags_internal::FlagOps<T>);
} }
return false;
} }
#endif
// Mutating access methods // Mutating access methods
void Write(const void* src, const flags_internal::FlagOpFn src_op) void Write(const void* src, const flags_internal::FlagOpFn src_op)
@ -397,12 +413,10 @@ class Flag final : public flags_internal::CommandLineFlag {
}; };
U u; U u;
impl_.Read(&u.value, &flags_internal::FlagOps<T>); impl_.Get(&u.value);
return std::move(u.value); return std::move(u.value);
} }
bool AtomicGet(T* v) const { return impl_.AtomicGet(v); }
void Set(const T& v) { impl_.Write(&v, &flags_internal::FlagOps<T>); } void Set(const T& v) { impl_.Write(&v, &flags_internal::FlagOps<T>); }
void SetCallback(const flags_internal::FlagCallback mutation_callback) { void SetCallback(const flags_internal::FlagCallback mutation_callback) {

@ -291,10 +291,10 @@ RealType Beta(URBG&& urbg, // NOLINT(runtime/references)
// absl::Exponential<T>(bitgen, lambda = 1) // absl::Exponential<T>(bitgen, lambda = 1)
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// //
// `absl::Exponential` produces a floating point number for discrete // `absl::Exponential` produces a floating point number representing the
// distributions of events occurring continuously and independently at a // distance (time) between two consecutive events in a point process of events
// constant average rate. `T` must be a floating point type, but may be inferred // occurring continuously and independently at a constant average rate. `T` must
// from the type of `lambda`. // be a floating point type, but may be inferred from the type of `lambda`.
// //
// See https://en.wikipedia.org/wiki/Exponential_distribution. // See https://en.wikipedia.org/wiki/Exponential_distribution.
// //

@ -673,7 +673,6 @@ from_chars_result FromCharsImpl(const char* first, const char* last,
EncodeResult(calculated, negative, &result, &value); EncodeResult(calculated, negative, &result, &value);
return result; return result;
} }
return result;
} }
} // namespace } // namespace

@ -160,11 +160,45 @@ void BM_CompareSame(benchmark::State& state) {
absl::string_view b = y; absl::string_view b = y;
for (auto _ : state) { for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(a.compare(b)); benchmark::DoNotOptimize(a.compare(b));
} }
} }
BENCHMARK(BM_CompareSame)->DenseRange(0, 3)->Range(4, 1 << 10); BENCHMARK(BM_CompareSame)->DenseRange(0, 3)->Range(4, 1 << 10);
void BM_CompareFirstOneLess(benchmark::State& state) {
const int len = state.range(0);
std::string x(len, 'a');
std::string y = x;
y.back() = 'b';
absl::string_view a = x;
absl::string_view b = y;
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(a.compare(b));
}
}
BENCHMARK(BM_CompareFirstOneLess)->DenseRange(1, 3)->Range(4, 1 << 10);
void BM_CompareSecondOneLess(benchmark::State& state) {
const int len = state.range(0);
std::string x(len, 'a');
std::string y = x;
x.back() = 'b';
absl::string_view a = x;
absl::string_view b = y;
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(a.compare(b));
}
}
BENCHMARK(BM_CompareSecondOneLess)->DenseRange(1, 3)->Range(4, 1 << 10);
void BM_find_string_view_len_one(benchmark::State& state) { void BM_find_string_view_len_one(benchmark::State& state) {
std::string haystack(state.range(0), '0'); std::string haystack(state.range(0), '0');
absl::string_view s(haystack); absl::string_view s(haystack);

@ -107,13 +107,16 @@ static_assert(
sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE, sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
"MutexGlobals must occupy an entire cacheline to prevent false sharing"); "MutexGlobals must occupy an entire cacheline to prevent false sharing");
ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)> ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
submit_profile_data; absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
ABSL_CONST_INIT absl::base_internal::AtomicHook< submit_profile_data;
void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
ABSL_CONST_INIT absl::base_internal::AtomicHook< const char *msg, const void *obj, int64_t wait_cycles)>
void (*)(const char *msg, const void *cv)> cond_var_tracer; mutex_tracer;
ABSL_CONST_INIT absl::base_internal::AtomicHook< ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
cond_var_tracer;
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
bool (*)(const void *pc, char *out, int out_size)> bool (*)(const void *pc, char *out, int out_size)>
symbolizer(absl::Symbolize); symbolizer(absl::Symbolize);

Loading…
Cancel
Save