Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

957 lines
27 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/exception_safety_testing.h"
#ifdef ABSL_HAVE_EXCEPTIONS
#include <cstddef>
#include <exception>
#include <iostream>
#include <list>
#include <type_traits>
#include <vector>
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
namespace testing {
namespace {
using ::testing::exceptions_internal::SetCountdown;
using ::testing::exceptions_internal::TestException;
using ::testing::exceptions_internal::UnsetCountdown;
// EXPECT_NO_THROW can't inspect the thrown inspection in general.
template <typename F>
void ExpectNoThrow(const F& f) {
try {
f();
} catch (const TestException& e) {
ADD_FAILURE() << "Unexpected exception thrown from " << e.what();
}
}
TEST(ThrowingValueTest, Throws) {
SetCountdown();
EXPECT_THROW(ThrowingValue<> bomb, TestException);
// It's not guaranteed that every operator only throws *once*. The default
// ctor only throws once, though, so use it to make sure we only throw when
// the countdown hits 0
SetCountdown(2);
ExpectNoThrow([]() { ThrowingValue<> bomb; });
ExpectNoThrow([]() { ThrowingValue<> bomb; });
EXPECT_THROW(ThrowingValue<> bomb, TestException);
UnsetCountdown();
}
// Tests that an operation throws when the countdown is at 0, doesn't throw when
// the countdown doesn't hit 0, and doesn't modify the state of the
// ThrowingValue if it throws
template <typename F>
void TestOp(const F& f) {
ExpectNoThrow(f);
SetCountdown();
EXPECT_THROW(f(), TestException);
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingCtors) {
ThrowingValue<> bomb;
TestOp([]() { ThrowingValue<> bomb(1); });
TestOp([&]() { ThrowingValue<> bomb1 = bomb; });
TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); });
}
TEST(ThrowingValueTest, ThrowingAssignment) {
ThrowingValue<> bomb, bomb1;
TestOp([&]() { bomb = bomb1; });
TestOp([&]() { bomb = std::move(bomb1); });
// Test that when assignment throws, the assignment should fail (lhs != rhs)
// and strong guarantee fails (lhs != lhs_copy).
{
ThrowingValue<> lhs(39), rhs(42);
ThrowingValue<> lhs_copy(lhs);
SetCountdown();
EXPECT_THROW(lhs = rhs, TestException);
UnsetCountdown();
EXPECT_NE(lhs, rhs);
EXPECT_NE(lhs_copy, lhs);
}
{
ThrowingValue<> lhs(39), rhs(42);
ThrowingValue<> lhs_copy(lhs), rhs_copy(rhs);
SetCountdown();
EXPECT_THROW(lhs = std::move(rhs), TestException);
UnsetCountdown();
EXPECT_NE(lhs, rhs_copy);
EXPECT_NE(lhs_copy, lhs);
}
}
TEST(ThrowingValueTest, ThrowingComparisons) {
ThrowingValue<> bomb1, bomb2;
TestOp([&]() { return bomb1 == bomb2; });
TestOp([&]() { return bomb1 != bomb2; });
TestOp([&]() { return bomb1 < bomb2; });
TestOp([&]() { return bomb1 <= bomb2; });
TestOp([&]() { return bomb1 > bomb2; });
TestOp([&]() { return bomb1 >= bomb2; });
}
TEST(ThrowingValueTest, ThrowingArithmeticOps) {
ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&bomb1]() { +bomb1; });
TestOp([&bomb1]() { -bomb1; });
TestOp([&bomb1]() { ++bomb1; });
TestOp([&bomb1]() { bomb1++; });
TestOp([&bomb1]() { --bomb1; });
TestOp([&bomb1]() { bomb1--; });
TestOp([&]() { bomb1 + bomb2; });
TestOp([&]() { bomb1 - bomb2; });
TestOp([&]() { bomb1* bomb2; });
TestOp([&]() { bomb1 / bomb2; });
TestOp([&]() { bomb1 << 1; });
TestOp([&]() { bomb1 >> 1; });
}
TEST(ThrowingValueTest, ThrowingLogicalOps) {
ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { !bomb1; });
TestOp([&]() { bomb1&& bomb2; });
TestOp([&]() { bomb1 || bomb2; });
}
TEST(ThrowingValueTest, ThrowingBitwiseOps) {
ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { ~bomb1; });
TestOp([&]() { bomb1& bomb2; });
TestOp([&]() { bomb1 | bomb2; });
TestOp([&]() { bomb1 ^ bomb2; });
}
TEST(ThrowingValueTest, ThrowingCompoundAssignmentOps) {
ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&]() { bomb1 += bomb2; });
TestOp([&]() { bomb1 -= bomb2; });
TestOp([&]() { bomb1 *= bomb2; });
TestOp([&]() { bomb1 /= bomb2; });
TestOp([&]() { bomb1 %= bomb2; });
TestOp([&]() { bomb1 &= bomb2; });
TestOp([&]() { bomb1 |= bomb2; });
TestOp([&]() { bomb1 ^= bomb2; });
TestOp([&]() { bomb1 *= bomb2; });
}
TEST(ThrowingValueTest, ThrowingStreamOps) {
ThrowingValue<> bomb;
TestOp([&]() {
std::istringstream stream;
stream >> bomb;
});
TestOp([&]() {
std::stringstream stream;
stream << bomb;
});
}
// Tests the operator<< of ThrowingValue by forcing ConstructorTracker to emit
// a nonfatal failure that contains the string representation of the Thrower
TEST(ThrowingValueTest, StreamOpsOutput) {
using ::testing::TypeSpec;
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
// Test default spec list (kEverythingThrows)
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<TypeSpec{}>;
auto thrower = Thrower(123);
thrower.~Thrower();
},
"ThrowingValue<>(123)");
// Test with one item in spec list (kNoThrowCopy)
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<TypeSpec::kNoThrowCopy>;
auto thrower = Thrower(234);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowCopy>(234)");
// Test with multiple items in spec list (kNoThrowMove, kNoThrowNew)
EXPECT_NONFATAL_FAILURE(
{
using Thrower =
ThrowingValue<TypeSpec::kNoThrowMove | TypeSpec::kNoThrowNew>;
auto thrower = Thrower(345);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowMove | kNoThrowNew>(345)");
// Test with all items in spec list (kNoThrowCopy, kNoThrowMove, kNoThrowNew)
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<static_cast<TypeSpec>(-1)>;
auto thrower = Thrower(456);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowCopy | kNoThrowMove | kNoThrowNew>(456)");
}
template <typename F>
void TestAllocatingOp(const F& f) {
ExpectNoThrow(f);
SetCountdown();
EXPECT_THROW(f(), exceptions_internal::TestBadAllocException);
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingAllocatingOps) {
// make_unique calls unqualified operator new, so these exercise the
// ThrowingValue overloads.
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>>(1); });
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); });
}
TEST(ThrowingValueTest, NonThrowingMoveCtor) {
ThrowingValue<TypeSpec::kNoThrowMove> nothrow_ctor;
SetCountdown();
ExpectNoThrow([&nothrow_ctor]() {
ThrowingValue<TypeSpec::kNoThrowMove> nothrow1 = std::move(nothrow_ctor);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingMoveAssign) {
ThrowingValue<TypeSpec::kNoThrowMove> nothrow_assign1, nothrow_assign2;
SetCountdown();
ExpectNoThrow([&nothrow_assign1, &nothrow_assign2]() {
nothrow_assign1 = std::move(nothrow_assign2);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingCopyCtor) {
ThrowingValue<> tv;
TestOp([&]() { ThrowingValue<> tv_copy(tv); });
}
TEST(ThrowingValueTest, ThrowingCopyAssign) {
ThrowingValue<> tv1, tv2;
TestOp([&]() { tv1 = tv2; });
}
TEST(ThrowingValueTest, NonThrowingCopyCtor) {
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_ctor;
SetCountdown();
ExpectNoThrow([&nothrow_ctor]() {
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow1(nothrow_ctor);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingCopyAssign) {
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_assign1, nothrow_assign2;
SetCountdown();
ExpectNoThrow([&nothrow_assign1, &nothrow_assign2]() {
nothrow_assign1 = nothrow_assign2;
});
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingSwap) {
ThrowingValue<> bomb1, bomb2;
TestOp([&]() { std::swap(bomb1, bomb2); });
}
TEST(ThrowingValueTest, NonThrowingSwap) {
ThrowingValue<TypeSpec::kNoThrowMove> bomb1, bomb2;
ExpectNoThrow([&]() { std::swap(bomb1, bomb2); });
}
TEST(ThrowingValueTest, NonThrowingAllocation) {
ThrowingValue<TypeSpec::kNoThrowNew>* allocated;
ThrowingValue<TypeSpec::kNoThrowNew>* array;
ExpectNoThrow([&allocated]() {
allocated = new ThrowingValue<TypeSpec::kNoThrowNew>(1);
delete allocated;
});
ExpectNoThrow([&array]() {
array = new ThrowingValue<TypeSpec::kNoThrowNew>[2];
delete[] array;
});
}
TEST(ThrowingValueTest, NonThrowingDelete) {
auto* allocated = new ThrowingValue<>(1);
auto* array = new ThrowingValue<>[2];
SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; });
SetCountdown();
ExpectNoThrow([array]() { delete[] array; });
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingPlacementDelete) {
constexpr int kArrayLen = 2;
// We intentionally create extra space to store the tag allocated by placement
// new[].
constexpr int kStorageLen = 4;
alignas(ThrowingValue<>) unsigned char buf[sizeof(ThrowingValue<>)];
alignas(ThrowingValue<>) unsigned char
array_buf[sizeof(ThrowingValue<>[kStorageLen])];
auto* placed = new (&buf) ThrowingValue<>(1);
auto placed_array = new (&array_buf) ThrowingValue<>[kArrayLen];
SetCountdown();
ExpectNoThrow([placed, &buf]() {
placed->~ThrowingValue<>();
ThrowingValue<>::operator delete(placed, &buf);
});
SetCountdown();
ExpectNoThrow([&, placed_array]() {
for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>();
ThrowingValue<>::operator delete[](placed_array, &array_buf);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingDestructor) {
auto* allocated = new ThrowingValue<>();
SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; });
UnsetCountdown();
}
TEST(ThrowingBoolTest, ThrowingBool) {
ThrowingBool t = true;
// Test that it's contextually convertible to bool
if (t) { // NOLINT(whitespace/empty_if_body)
}
EXPECT_TRUE(t);
TestOp([&]() { (void)!t; });
}
TEST(ThrowingAllocatorTest, MemoryManagement) {
// Just exercise the memory management capabilities under LSan to make sure we
// don't leak.
ThrowingAllocator<int> int_alloc;
int* ip = int_alloc.allocate(1);
int_alloc.deallocate(ip, 1);
int* i_array = int_alloc.allocate(2);
int_alloc.deallocate(i_array, 2);
ThrowingAllocator<ThrowingValue<>> tv_alloc;
ThrowingValue<>* ptr = tv_alloc.allocate(1);
tv_alloc.deallocate(ptr, 1);
ThrowingValue<>* tv_array = tv_alloc.allocate(2);
tv_alloc.deallocate(tv_array, 2);
}
TEST(ThrowingAllocatorTest, CallsGlobalNew) {
ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate> nothrow_alloc;
ThrowingValue<>* ptr;
SetCountdown();
// This will only throw if ThrowingValue::new is called.
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); });
nothrow_alloc.deallocate(ptr, 1);
UnsetCountdown();
}
TEST(ThrowingAllocatorTest, ThrowingConstructors) {
ThrowingAllocator<int> int_alloc;
int* ip = nullptr;
SetCountdown();
EXPECT_THROW(ip = int_alloc.allocate(1), TestException);
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
*ip = 1;
SetCountdown();
EXPECT_THROW(int_alloc.construct(ip, 2), TestException);
EXPECT_EQ(*ip, 1);
int_alloc.deallocate(ip, 1);
UnsetCountdown();
}
TEST(ThrowingAllocatorTest, NonThrowingConstruction) {
{
ThrowingAllocator<int, AllocSpec::kNoThrowAllocate> int_alloc;
int* ip = nullptr;
SetCountdown();
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
SetCountdown();
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1);
UnsetCountdown();
}
{
ThrowingAllocator<int> int_alloc;
int* ip = nullptr;
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1);
}
{
ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate>
nothrow_alloc;
ThrowingValue<>* ptr;
SetCountdown();
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); });
SetCountdown();
ExpectNoThrow(
[&]() { nothrow_alloc.construct(ptr, 2, testing::nothrow_ctor); });
EXPECT_EQ(ptr->Get(), 2);
nothrow_alloc.destroy(ptr);
nothrow_alloc.deallocate(ptr, 1);
UnsetCountdown();
}
{
ThrowingAllocator<int> a;
SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; });
SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); });
UnsetCountdown();
}
}
TEST(ThrowingAllocatorTest, ThrowingAllocatorConstruction) {
ThrowingAllocator<int> a;
TestOp([]() { ThrowingAllocator<int> a; });
TestOp([&]() { a.select_on_container_copy_construction(); });
}
TEST(ThrowingAllocatorTest, State) {
ThrowingAllocator<int> a1, a2;
EXPECT_NE(a1, a2);
auto a3 = a1;
EXPECT_EQ(a3, a1);
int* ip = a1.allocate(1);
EXPECT_EQ(a3, a1);
a3.deallocate(ip, 1);
EXPECT_EQ(a3, a1);
}
TEST(ThrowingAllocatorTest, InVector) {
std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v;
for (int i = 0; i < 20; ++i) v.push_back({});
for (int i = 0; i < 20; ++i) v.pop_back();
}
TEST(ThrowingAllocatorTest, InList) {
std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l;
for (int i = 0; i < 20; ++i) l.push_back({});
for (int i = 0; i < 20; ++i) l.pop_back();
for (int i = 0; i < 20; ++i) l.push_front({});
for (int i = 0; i < 20; ++i) l.pop_front();
}
template <typename TesterInstance, typename = void>
struct NullaryTestValidator : public std::false_type {};
template <typename TesterInstance>
struct NullaryTestValidator<
TesterInstance,
absl::void_t<decltype(std::declval<TesterInstance>().Test())>>
: public std::true_type {};
template <typename TesterInstance>
bool HasNullaryTest(const TesterInstance&) {
return NullaryTestValidator<TesterInstance>::value;
}
void DummyOp(void*) {}
template <typename TesterInstance, typename = void>
struct UnaryTestValidator : public std::false_type {};
template <typename TesterInstance>
struct UnaryTestValidator<
TesterInstance,
absl::void_t<decltype(std::declval<TesterInstance>().Test(DummyOp))>>
: public std::true_type {};
template <typename TesterInstance>
bool HasUnaryTest(const TesterInstance&) {
return UnaryTestValidator<TesterInstance>::value;
}
TEST(ExceptionSafetyTesterTest, IncompleteTypesAreNotTestable) {
using T = exceptions_internal::UninitializedT;
auto op = [](T* t) {};
auto inv = [](T*) { return testing::AssertionSuccess(); };
auto fac = []() { return absl::make_unique<T>(); };
// Test that providing operation and inveriants still does not allow for the
// the invocation of .Test() and .Test(op) because it lacks a factory
auto without_fac =
testing::MakeExceptionSafetyTester().WithOperation(op).WithContracts(
inv, testing::strong_guarantee);
EXPECT_FALSE(HasNullaryTest(without_fac));
EXPECT_FALSE(HasUnaryTest(without_fac));
// Test that providing contracts and factory allows the invocation of
// .Test(op) but does not allow for .Test() because it lacks an operation
auto without_op = testing::MakeExceptionSafetyTester()
.WithContracts(inv, testing::strong_guarantee)
.WithFactory(fac);
EXPECT_FALSE(HasNullaryTest(without_op));
EXPECT_TRUE(HasUnaryTest(without_op));
// Test that providing operation and factory still does not allow for the
// the invocation of .Test() and .Test(op) because it lacks contracts
auto without_inv =
testing::MakeExceptionSafetyTester().WithOperation(op).WithFactory(fac);
EXPECT_FALSE(HasNullaryTest(without_inv));
EXPECT_FALSE(HasUnaryTest(without_inv));
}
struct ExampleStruct {};
std::unique_ptr<ExampleStruct> ExampleFunctionFactory() {
return absl::make_unique<ExampleStruct>();
}
void ExampleFunctionOperation(ExampleStruct*) {}
testing::AssertionResult ExampleFunctionContract(ExampleStruct*) {
return testing::AssertionSuccess();
}
struct {
std::unique_ptr<ExampleStruct> operator()() const {
return ExampleFunctionFactory();
}
} example_struct_factory;
struct {
void operator()(ExampleStruct*) const {}
} example_struct_operation;
struct {
testing::AssertionResult operator()(ExampleStruct* example_struct) const {
return ExampleFunctionContract(example_struct);
}
} example_struct_contract;
auto example_lambda_factory = []() { return ExampleFunctionFactory(); };
auto example_lambda_operation = [](ExampleStruct*) {};
auto example_lambda_contract = [](ExampleStruct* example_struct) {
return ExampleFunctionContract(example_struct);
};
// Testing that function references, pointers, structs with operator() and
// lambdas can all be used with ExceptionSafetyTester
TEST(ExceptionSafetyTesterTest, MixedFunctionTypes) {
// function reference
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(ExampleFunctionFactory)
.WithOperation(ExampleFunctionOperation)
.WithContracts(ExampleFunctionContract)
.Test());
// function pointer
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(&ExampleFunctionFactory)
.WithOperation(&ExampleFunctionOperation)
.WithContracts(&ExampleFunctionContract)
.Test());
// struct
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(example_struct_factory)
.WithOperation(example_struct_operation)
.WithContracts(example_struct_contract)
.Test());
// lambda
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(example_lambda_factory)
.WithOperation(example_lambda_operation)
.WithContracts(example_lambda_contract)
.Test());
}
struct NonNegative {
bool operator==(const NonNegative& other) const { return i == other.i; }
int i;
};
testing::AssertionResult CheckNonNegativeInvariants(NonNegative* g) {
if (g->i >= 0) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be non-negative but is " << g->i;
}
struct {
template <typename T>
void operator()(T* t) const {
(*t)();
}
} invoker;
auto tester =
testing::MakeExceptionSafetyTester().WithOperation(invoker).WithContracts(
CheckNonNegativeInvariants);
auto strong_tester = tester.WithContracts(testing::strong_guarantee);
struct FailsBasicGuarantee : public NonNegative {
void operator()() {
--i;
ThrowingValue<> bomb;
++i;
}
};
TEST(ExceptionCheckTest, BasicGuaranteeFailure) {
EXPECT_FALSE(tester.WithInitialValue(FailsBasicGuarantee{}).Test());
}
struct FollowsBasicGuarantee : public NonNegative {
void operator()() {
++i;
ThrowingValue<> bomb;
}
};
TEST(ExceptionCheckTest, BasicGuarantee) {
EXPECT_TRUE(tester.WithInitialValue(FollowsBasicGuarantee{}).Test());
}
TEST(ExceptionCheckTest, StrongGuaranteeFailure) {
EXPECT_FALSE(strong_tester.WithInitialValue(FailsBasicGuarantee{}).Test());
EXPECT_FALSE(strong_tester.WithInitialValue(FollowsBasicGuarantee{}).Test());
}
struct BasicGuaranteeWithExtraContracts : public NonNegative {
// After operator(), i is incremented. If operator() throws, i is set to 9999
void operator()() {
int old_i = i;
i = kExceptionSentinel;
ThrowingValue<> bomb;
i = ++old_i;
}
static constexpr int kExceptionSentinel = 9999;
};
constexpr int BasicGuaranteeWithExtraContracts::kExceptionSentinel;
TEST(ExceptionCheckTest, BasicGuaranteeWithExtraContracts) {
auto tester_with_val =
tester.WithInitialValue(BasicGuaranteeWithExtraContracts{});
EXPECT_TRUE(tester_with_val.Test());
EXPECT_TRUE(
tester_with_val
.WithContracts([](BasicGuaranteeWithExtraContracts* o) {
if (o->i == BasicGuaranteeWithExtraContracts::kExceptionSentinel) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be "
<< BasicGuaranteeWithExtraContracts::kExceptionSentinel
<< ", but is " << o->i;
})
.Test());
}
struct FollowsStrongGuarantee : public NonNegative {
void operator()() { ThrowingValue<> bomb; }
};
TEST(ExceptionCheckTest, StrongGuarantee) {
EXPECT_TRUE(tester.WithInitialValue(FollowsStrongGuarantee{}).Test());
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}).Test());
}
struct HasReset : public NonNegative {
void operator()() {
i = -1;
ThrowingValue<> bomb;
i = 1;
}
void reset() { i = 0; }
};
testing::AssertionResult CheckHasResetContracts(HasReset* h) {
h->reset();
return testing::AssertionResult(h->i == 0);
}
TEST(ExceptionCheckTest, ModifyingChecker) {
auto set_to_1000 = [](FollowsBasicGuarantee* g) {
g->i = 1000;
return testing::AssertionSuccess();
};
auto is_1000 = [](FollowsBasicGuarantee* g) {
return testing::AssertionResult(g->i == 1000);
};
auto increment = [](FollowsStrongGuarantee* g) {
++g->i;
return testing::AssertionSuccess();
};
EXPECT_FALSE(tester.WithInitialValue(FollowsBasicGuarantee{})
.WithContracts(set_to_1000, is_1000)
.Test());
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{})
.WithContracts(increment)
.Test());
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithInitialValue(HasReset{})
.WithContracts(CheckHasResetContracts)
.Test(invoker));
}
TEST(ExceptionSafetyTesterTest, ResetsCountdown) {
auto test =
testing::MakeExceptionSafetyTester()
.WithInitialValue(ThrowingValue<>())
.WithContracts([](ThrowingValue<>*) { return AssertionSuccess(); })
.WithOperation([](ThrowingValue<>*) {});
ASSERT_TRUE(test.Test());
// If the countdown isn't reset because there were no exceptions thrown, then
// this will fail with a termination from an unhandled exception
EXPECT_TRUE(test.Test());
}
struct NonCopyable : public NonNegative {
NonCopyable(const NonCopyable&) = delete;
NonCopyable() : NonNegative{0} {}
void operator()() { ThrowingValue<> bomb; }
};
TEST(ExceptionCheckTest, NonCopyable) {
auto factory = []() { return absl::make_unique<NonCopyable>(); };
EXPECT_TRUE(tester.WithFactory(factory).Test());
EXPECT_TRUE(strong_tester.WithFactory(factory).Test());
}
struct NonEqualityComparable : public NonNegative {
void operator()() { ThrowingValue<> bomb; }
void ModifyOnThrow() {
++i;
ThrowingValue<> bomb;
static_cast<void>(bomb);
--i;
}
};
TEST(ExceptionCheckTest, NonEqualityComparable) {
auto nec_is_strong = [](NonEqualityComparable* nec) {
return testing::AssertionResult(nec->i == NonEqualityComparable().i);
};
auto strong_nec_tester = tester.WithInitialValue(NonEqualityComparable{})
.WithContracts(nec_is_strong);
EXPECT_TRUE(strong_nec_tester.Test());
EXPECT_FALSE(strong_nec_tester.Test(
[](NonEqualityComparable* n) { n->ModifyOnThrow(); }));
}
template <typename T>
struct ExhaustivenessTester {
void operator()() {
successes |= 1;
T b1;
static_cast<void>(b1);
successes |= (1 << 1);
T b2;
static_cast<void>(b2);
successes |= (1 << 2);
T b3;
static_cast<void>(b3);
successes |= (1 << 3);
}
bool operator==(const ExhaustivenessTester<ThrowingValue<>>&) const {
return true;
}
static unsigned char successes;
};
struct {
template <typename T>
testing::AssertionResult operator()(ExhaustivenessTester<T>*) const {
return testing::AssertionSuccess();
}
} CheckExhaustivenessTesterContracts;
template <typename T>
unsigned char ExhaustivenessTester<T>::successes = 0;
TEST(ExceptionCheckTest, Exhaustiveness) {
auto exhaust_tester = testing::MakeExceptionSafetyTester()
.WithContracts(CheckExhaustivenessTesterContracts)
.WithOperation(invoker);
EXPECT_TRUE(
exhaust_tester.WithInitialValue(ExhaustivenessTester<int>{}).Test());
EXPECT_EQ(ExhaustivenessTester<int>::successes, 0xF);
EXPECT_TRUE(
exhaust_tester.WithInitialValue(ExhaustivenessTester<ThrowingValue<>>{})
.WithContracts(testing::strong_guarantee)
.Test());
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF);
}
struct LeaksIfCtorThrows : private exceptions_internal::TrackedObject {
LeaksIfCtorThrows() : TrackedObject(ABSL_PRETTY_FUNCTION) {
++counter;
ThrowingValue<> v;
static_cast<void>(v);
--counter;
}
LeaksIfCtorThrows(const LeaksIfCtorThrows&) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION) {}
static int counter;
};
int LeaksIfCtorThrows::counter = 0;
TEST(ExceptionCheckTest, TestLeakyCtor) {
testing::TestThrowingCtor<LeaksIfCtorThrows>();
EXPECT_EQ(LeaksIfCtorThrows::counter, 1);
LeaksIfCtorThrows::counter = 0;
}
struct Tracked : private exceptions_internal::TrackedObject {
Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {}
};
TEST(ConstructorTrackerTest, CreatedBefore) {
Tracked a, b, c;
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
}
TEST(ConstructorTrackerTest, CreatedAfter) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
Tracked a, b, c;
}
TEST(ConstructorTrackerTest, NotDestroyedAfter) {
alignas(Tracked) unsigned char storage[sizeof(Tracked)];
EXPECT_NONFATAL_FAILURE(
{
exceptions_internal::ConstructorTracker ct(
exceptions_internal::countdown);
new (&storage) Tracked();
},
"not destroyed");
}
TEST(ConstructorTrackerTest, DestroyedTwice) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
EXPECT_NONFATAL_FAILURE(
{
Tracked t;
t.~Tracked();
},
"re-destroyed");
}
TEST(ConstructorTrackerTest, ConstructedTwice) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
alignas(Tracked) unsigned char storage[sizeof(Tracked)];
EXPECT_NONFATAL_FAILURE(
{
new (&storage) Tracked();
new (&storage) Tracked();
reinterpret_cast<Tracked*>(&storage)->~Tracked();
},
"re-constructed");
}
TEST(ThrowingValueTraitsTest, RelationalOperators) {
ThrowingValue<> a, b;
EXPECT_TRUE((std::is_convertible<decltype(a == b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a != b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a < b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a <= b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a > b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a >= b), bool>::value));
}
TEST(ThrowingAllocatorTraitsTest, Assignablility) {
EXPECT_TRUE(absl::is_move_assignable<ThrowingAllocator<int>>::value);
EXPECT_TRUE(absl::is_copy_assignable<ThrowingAllocator<int>>::value);
EXPECT_TRUE(std::is_nothrow_move_assignable<ThrowingAllocator<int>>::value);
EXPECT_TRUE(std::is_nothrow_copy_assignable<ThrowingAllocator<int>>::value);
}
} // namespace
} // namespace testing
#endif // ABSL_HAVE_EXCEPTIONS