|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
//
|
|
|
|
// Produce stack trace
|
|
|
|
|
|
|
|
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
|
|
|
|
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
|
|
|
|
|
|
|
|
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
|
|
|
|
#include <ucontext.h> // for ucontext_t
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(_WIN32)
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
#include "absl/base/macros.h"
|
|
|
|
#include "absl/base/port.h"
|
|
|
|
#include "absl/debugging/internal/address_is_readable.h"
|
|
|
|
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
|
|
|
|
#include "absl/debugging/stacktrace.h"
|
|
|
|
|
|
|
|
#include "absl/base/internal/raw_logging.h"
|
|
|
|
|
|
|
|
using absl::debugging_internal::AddressIsReadable;
|
|
|
|
|
|
|
|
#if defined(__linux__) && defined(__i386__)
|
|
|
|
// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
|
|
|
|
// preceeding "syscall" or "sysenter".
|
|
|
|
// If __kernel_vsyscall uses frame pointer, answer 0.
|
|
|
|
//
|
|
|
|
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
|
|
|
|
// to analyze before giving up. Up to kMaxBytes+1 bytes of
|
|
|
|
// instructions could be accessed.
|
|
|
|
//
|
|
|
|
// Here are known __kernel_vsyscall instruction sequences:
|
|
|
|
//
|
|
|
|
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
|
|
|
|
// Used on Intel.
|
|
|
|
// 0xffffe400 <__kernel_vsyscall+0>: push %ecx
|
|
|
|
// 0xffffe401 <__kernel_vsyscall+1>: push %edx
|
|
|
|
// 0xffffe402 <__kernel_vsyscall+2>: push %ebp
|
|
|
|
// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
|
|
|
|
// 0xffffe405 <__kernel_vsyscall+5>: sysenter
|
|
|
|
//
|
|
|
|
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
|
|
|
|
// Used on AMD.
|
|
|
|
// 0xffffe400 <__kernel_vsyscall+0>: push %ebp
|
|
|
|
// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
|
|
|
|
// 0xffffe403 <__kernel_vsyscall+3>: syscall
|
|
|
|
//
|
|
|
|
|
|
|
|
// The sequence below isn't actually expected in Google fleet,
|
|
|
|
// here only for completeness. Remove this comment from OSS release.
|
|
|
|
|
|
|
|
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
|
|
|
|
// 0xffffe400 <__kernel_vsyscall+0>: int $0x80
|
|
|
|
// 0xffffe401 <__kernel_vsyscall+1>: ret
|
|
|
|
//
|
|
|
|
static const int kMaxBytes = 10;
|
|
|
|
|
|
|
|
// We use assert()s instead of DCHECK()s -- this is too low level
|
|
|
|
// for DCHECK().
|
|
|
|
|
|
|
|
static int CountPushInstructions(const unsigned char *const addr) {
|
|
|
|
int result = 0;
|
|
|
|
for (int i = 0; i < kMaxBytes; ++i) {
|
|
|
|
if (addr[i] == 0x89) {
|
|
|
|
// "mov reg,reg"
|
|
|
|
if (addr[i + 1] == 0xE5) {
|
|
|
|
// Found "mov %esp,%ebp".
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
++i; // Skip register encoding byte.
|
|
|
|
} else if (addr[i] == 0x0F &&
|
|
|
|
(addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
|
|
|
|
// Found "sysenter" or "syscall".
|
|
|
|
return result;
|
|
|
|
} else if ((addr[i] & 0xF0) == 0x50) {
|
|
|
|
// Found "push %reg".
|
|
|
|
++result;
|
|
|
|
} else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
|
|
|
|
// Found "int $0x80"
|
|
|
|
assert(result == 0);
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
// Unexpected instruction.
|
|
|
|
assert(false && "unexpected instruction in __kernel_vsyscall");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Unexpected: didn't find SYSENTER or SYSCALL in
|
|
|
|
// [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
|
|
|
|
assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Assume stack frames larger than 100,000 bytes are bogus.
|
|
|
|
static const int kMaxFrameBytes = 100000;
|
|
|
|
|
|
|
|
// Returns the stack frame pointer from signal context, 0 if unknown.
|
|
|
|
// vuc is a ucontext_t *. We use void* to avoid the use
|
|
|
|
// of ucontext_t on non-POSIX systems.
|
|
|
|
static uintptr_t GetFP(const void *vuc) {
|
|
|
|
#if !defined(__linux__)
|
|
|
|
static_cast<void>(vuc); // Avoid an unused argument compiler warning.
|
|
|
|
#else
|
|
|
|
if (vuc != nullptr) {
|
|
|
|
auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
|
|
|
|
#if defined(__i386__)
|
|
|
|
const auto bp = uc->uc_mcontext.gregs[REG_EBP];
|
|
|
|
const auto sp = uc->uc_mcontext.gregs[REG_ESP];
|
|
|
|
#elif defined(__x86_64__)
|
|
|
|
const auto bp = uc->uc_mcontext.gregs[REG_RBP];
|
|
|
|
const auto sp = uc->uc_mcontext.gregs[REG_RSP];
|
|
|
|
#else
|
|
|
|
const uintptr_t bp = 0;
|
|
|
|
const uintptr_t sp = 0;
|
|
|
|
#endif
|
|
|
|
// Sanity-check that the base pointer is valid. It's possible that some
|
|
|
|
// code in the process is compiled with --copt=-fomit-frame-pointer or
|
|
|
|
// --copt=-momit-leaf-frame-pointer.
|
|
|
|
//
|
|
|
|
// TODO(bcmills): -momit-leaf-frame-pointer is currently the default
|
|
|
|
// behavior when building with clang. Talk to the C++ toolchain team about
|
|
|
|
// fixing that.
|
|
|
|
if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp;
|
|
|
|
|
|
|
|
// If bp isn't a plausible frame pointer, return the stack pointer instead.
|
|
|
|
// If we're lucky, it points to the start of a stack frame; otherwise, we'll
|
|
|
|
// get one frame of garbage in the stack trace and fail the sanity check on
|
|
|
|
// the next iteration.
|
|
|
|
return sp;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given a pointer to a stack frame, locate and return the calling
|
|
|
|
// stackframe, or return null if no stackframe can be found. Perform sanity
|
|
|
|
// checks (the strictness of which is controlled by the boolean parameter
|
|
|
|
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
|
|
|
|
template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
|
|
|
|
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
|
|
|
|
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
|
|
|
|
static void **NextStackFrame(void **old_fp, const void *uc,
|
|
|
|
size_t stack_low, size_t stack_high) {
|
|
|
|
void **new_fp = (void **)*old_fp;
|
|
|
|
|
|
|
|
#if defined(__linux__) && defined(__i386__)
|
|
|
|
if (WITH_CONTEXT && uc != nullptr) {
|
|
|
|
// How many "push %reg" instructions are there at __kernel_vsyscall?
|
|
|
|
// This is constant for a given kernel and processor, so compute
|
|
|
|
// it only once.
|
|
|
|
static int num_push_instructions = -1; // Sentinel: not computed yet.
|
|
|
|
// Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
|
|
|
|
// be there.
|
|
|
|
static const unsigned char *kernel_rt_sigreturn_address = nullptr;
|
|
|
|
static const unsigned char *kernel_vsyscall_address = nullptr;
|
|
|
|
if (num_push_instructions == -1) {
|
|
|
|
#ifdef ABSL_HAVE_VDSO_SUPPORT
|
|
|
|
absl::debugging_internal::VDSOSupport vdso;
|
|
|
|
if (vdso.IsPresent()) {
|
|
|
|
absl::debugging_internal::VDSOSupport::SymbolInfo
|
|
|
|
rt_sigreturn_symbol_info;
|
|
|
|
absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
|
|
|
|
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
|
|
|
|
&rt_sigreturn_symbol_info) ||
|
|
|
|
!vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
|
|
|
|
&vsyscall_symbol_info) ||
|
|
|
|
rt_sigreturn_symbol_info.address == nullptr ||
|
|
|
|
vsyscall_symbol_info.address == nullptr) {
|
|
|
|
// Unexpected: 32-bit VDSO is present, yet one of the expected
|
|
|
|
// symbols is missing or null.
|
|
|
|
assert(false && "VDSO is present, but doesn't have expected symbols");
|
|
|
|
num_push_instructions = 0;
|
|
|
|
} else {
|
|
|
|
kernel_rt_sigreturn_address =
|
|
|
|
reinterpret_cast<const unsigned char *>(
|
|
|
|
rt_sigreturn_symbol_info.address);
|
|
|
|
kernel_vsyscall_address =
|
|
|
|
reinterpret_cast<const unsigned char *>(
|
|
|
|
vsyscall_symbol_info.address);
|
|
|
|
num_push_instructions =
|
|
|
|
CountPushInstructions(kernel_vsyscall_address);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
num_push_instructions = 0;
|
|
|
|
}
|
|
|
|
#else // ABSL_HAVE_VDSO_SUPPORT
|
|
|
|
num_push_instructions = 0;
|
|
|
|
#endif // ABSL_HAVE_VDSO_SUPPORT
|
|
|
|
}
|
|
|
|
if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
|
|
|
|
old_fp[1] == kernel_rt_sigreturn_address) {
|
|
|
|
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
|
|
|
|
// This kernel does not use frame pointer in its VDSO code,
|
|
|
|
// and so %ebp is not suitable for unwinding.
|
|
|
|
void **const reg_ebp =
|
|
|
|
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
|
|
|
|
const unsigned char *const reg_eip =
|
|
|
|
reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
|
|
|
|
if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
|
|
|
|
reg_eip - kernel_vsyscall_address < kMaxBytes) {
|
|
|
|
// We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
|
|
|
|
// Restore from 'ucv' instead.
|
|
|
|
void **const reg_esp =
|
|
|
|
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
|
|
|
|
// Check that alleged %esp is not null and is reasonably aligned.
|
|
|
|
if (reg_esp &&
|
|
|
|
((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
|
|
|
|
// Check that alleged %esp is actually readable. This is to prevent
|
|
|
|
// "double fault" in case we hit the first fault due to e.g. stack
|
|
|
|
// corruption.
|
|
|
|
void *const reg_esp2 = reg_esp[num_push_instructions - 1];
|
|
|
|
if (AddressIsReadable(reg_esp2)) {
|
|
|
|
// Alleged %esp is readable, use it for further unwinding.
|
|
|
|
new_fp = reinterpret_cast<void **>(reg_esp2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
|
|
|
|
const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
|
|
|
|
|
|
|
|
// Check that the transition from frame pointer old_fp to frame
|
|
|
|
// pointer new_fp isn't clearly bogus. Skip the checks if new_fp
|
|
|
|
// matches the signal context, so that we don't skip out early when
|
|
|
|
// using an alternate signal stack.
|
|
|
|
//
|
|
|
|
// TODO(bcmills): The GetFP call should be completely unnecessary when
|
|
|
|
// ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
|
|
|
|
// stack by this point), but it is empirically still needed (e.g. when the
|
|
|
|
// stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some
|
|
|
|
// frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what
|
|
|
|
// it's supposed to.
|
|
|
|
if (STRICT_UNWINDING &&
|
|
|
|
(!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
|
|
|
|
// With the stack growing downwards, older stack frame must be
|
|
|
|
// at a greater address that the current one.
|
|
|
|
if (new_fp_u <= old_fp_u) return nullptr;
|
|
|
|
if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr;
|
|
|
|
|
|
|
|
if (stack_low < old_fp_u && old_fp_u <= stack_high) {
|
|
|
|
// Old BP was in the expected stack region...
|
|
|
|
if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
|
|
|
|
// ... but new BP is outside of expected stack region.
|
|
|
|
// It is most likely bogus.
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// We may be here if we are executing in a co-routine with a
|
|
|
|
// separate stack. We can't do safety checks in this case.
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below
|
|
|
|
// In the non-strict mode, allow discontiguous stack frames.
|
|
|
|
// (alternate-signal-stacks for example).
|
|
|
|
if (new_fp == old_fp) return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
|
|
|
|
#ifdef __i386__
|
|
|
|
// On 32-bit machines, the stack pointer can be very close to
|
|
|
|
// 0xffffffff, so we explicitly check for a pointer into the
|
|
|
|
// last two pages in the address space
|
|
|
|
if (new_fp_u >= 0xffffe000) return nullptr;
|
|
|
|
#endif
|
|
|
|
#if !defined(_WIN32)
|
|
|
|
if (!STRICT_UNWINDING) {
|
|
|
|
// Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
|
|
|
|
// on AMD-based machines with VDSO-enabled kernels.
|
|
|
|
// Make an extra sanity check to insure new_fp is readable.
|
|
|
|
// Note: NextStackFrame<false>() is only called while the program
|
|
|
|
// is already on its last leg, so it's ok to be slow here.
|
|
|
|
|
|
|
|
if (!AddressIsReadable(new_fp)) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return new_fp;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
|
|
|
|
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
|
|
|
|
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
|
|
|
|
ABSL_ATTRIBUTE_NOINLINE
|
|
|
|
static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
|
|
|
|
const void *ucp, int *min_dropped_frames) {
|
|
|
|
int n = 0;
|
|
|
|
void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
|
|
|
|
|
|
|
|
size_t stack_low = getpagesize(); // Assume that the first page is not stack.
|
|
|
|
size_t stack_high = std::numeric_limits<size_t>::max() - sizeof(void *);
|
|
|
|
|
|
|
|
while (fp && n < max_depth) {
|
|
|
|
if (*(fp + 1) == reinterpret_cast<void *>(0)) {
|
|
|
|
// In 64-bit code, we often see a frame that
|
|
|
|
// points to itself and has a return address of 0.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
|
|
|
|
fp, ucp, stack_low, stack_high);
|
|
|
|
if (skip_count > 0) {
|
|
|
|
skip_count--;
|
|
|
|
} else {
|
|
|
|
result[n] = *(fp + 1);
|
|
|
|
if (IS_STACK_FRAMES) {
|
|
|
|
if (next_fp > fp) {
|
|
|
|
sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp;
|
|
|
|
} else {
|
|
|
|
// A frame-size of 0 is used to indicate unknown frame size.
|
|
|
|
sizes[n] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
fp = next_fp;
|
|
|
|
}
|
|
|
|
if (min_dropped_frames != nullptr) {
|
|
|
|
// Implementation detail: we clamp the max of frames we are willing to
|
|
|
|
// count, so as not to spend too much time in the loop below.
|
|
|
|
const int kMaxUnwind = 1000;
|
|
|
|
int j = 0;
|
|
|
|
for (; fp != nullptr && j < kMaxUnwind; j++) {
|
|
|
|
fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
|
|
|
|
stack_high);
|
|
|
|
}
|
|
|
|
*min_dropped_frames = j;
|
|
|
|
}
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
namespace debugging_internal {
|
|
|
|
bool StackTraceWorksForTest() {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} // namespace debugging_internal
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
|