Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1848 lines
60 KiB

// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/status/statusor.h"
#include <array>
#include <initializer_list>
#include <memory>
Export of internal Abseil changes -- e1a0989213908927f05002ab7697955ad7dc5632 by Martijn Vels <mvels@google.com>: Introduce CordRepBtreeReader CordRepBtreeReader provides forward navigation on cord btrees with absolute positional (offset) context, iterating over btree data in absl::string_view chunks. PiperOrigin-RevId: 387585161 -- 206d298e2bccb998731995cb05717b31fa9d90ec by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 387577465 -- f07fafe8a400a4f5dfef186d1a3b61fb7f709fe5 by Abseil Team <absl-team@google.com>: This change adds debug-build enforcement that the inputs to absl::c_set_intersection are sorted, which is a prerequisite of std::set_intersection and required for correct operation of the algorithm. PiperOrigin-RevId: 387446657 -- 2ca15c6361bb758be7fb88cae82bf8489b4d3364 by Abseil Team <absl-team@google.com>: Change BadStatusOrAccess::what() to contain status_.ToString() This ensures that on uncaught exception propagation that would cause program termination, the message contains information on the error which caused the failure. Lazy initialization of what_ is a value judgement: if most callers are expected to call status() not what(), lazy initialization is correct. If most callers are expected to call what(), it should be initialized on construction to avoid atomic operation overhead. PiperOrigin-RevId: 387402243 -- 3e855084e104dc972a0c4385395e6d8e8465127f by Gennadiy Rozental <rogeeff@google.com>: LSC: Standardize access to GoogleTest flags on GTEST_FLAG_GET/GTEST_FLAG_SET This change is necessary to move Googletest flags out of the testing:: namespace without breaking code. These new macros will continue to be required for code that needs to work both inside Google's monorepo and outside in OSS, but can be used anywhere inside the monorepo. PiperOrigin-RevId: 387396025 -- 1ccf5895a15059ef689af5c4817d7b84f73190be by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 387388496 GitOrigin-RevId: e1a0989213908927f05002ab7697955ad7dc5632 Change-Id: I3606d9ce29d909a3555e662e9df564202cf5068d
4 years ago
#include <string>
#include <type_traits>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/casts.h"
#include "absl/memory/memory.h"
#include "absl/status/status.h"
Export of internal Abseil changes -- e1a0989213908927f05002ab7697955ad7dc5632 by Martijn Vels <mvels@google.com>: Introduce CordRepBtreeReader CordRepBtreeReader provides forward navigation on cord btrees with absolute positional (offset) context, iterating over btree data in absl::string_view chunks. PiperOrigin-RevId: 387585161 -- 206d298e2bccb998731995cb05717b31fa9d90ec by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 387577465 -- f07fafe8a400a4f5dfef186d1a3b61fb7f709fe5 by Abseil Team <absl-team@google.com>: This change adds debug-build enforcement that the inputs to absl::c_set_intersection are sorted, which is a prerequisite of std::set_intersection and required for correct operation of the algorithm. PiperOrigin-RevId: 387446657 -- 2ca15c6361bb758be7fb88cae82bf8489b4d3364 by Abseil Team <absl-team@google.com>: Change BadStatusOrAccess::what() to contain status_.ToString() This ensures that on uncaught exception propagation that would cause program termination, the message contains information on the error which caused the failure. Lazy initialization of what_ is a value judgement: if most callers are expected to call status() not what(), lazy initialization is correct. If most callers are expected to call what(), it should be initialized on construction to avoid atomic operation overhead. PiperOrigin-RevId: 387402243 -- 3e855084e104dc972a0c4385395e6d8e8465127f by Gennadiy Rozental <rogeeff@google.com>: LSC: Standardize access to GoogleTest flags on GTEST_FLAG_GET/GTEST_FLAG_SET This change is necessary to move Googletest flags out of the testing:: namespace without breaking code. These new macros will continue to be required for code that needs to work both inside Google's monorepo and outside in OSS, but can be used anywhere inside the monorepo. PiperOrigin-RevId: 387396025 -- 1ccf5895a15059ef689af5c4817d7b84f73190be by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 387388496 GitOrigin-RevId: e1a0989213908927f05002ab7697955ad7dc5632 Change-Id: I3606d9ce29d909a3555e662e9df564202cf5068d
4 years ago
#include "absl/strings/string_view.h"
#include "absl/types/any.h"
#include "absl/utility/utility.h"
namespace {
using ::testing::AllOf;
using ::testing::AnyWith;
using ::testing::ElementsAre;
using ::testing::Field;
Export of internal Abseil changes -- e1a0989213908927f05002ab7697955ad7dc5632 by Martijn Vels <mvels@google.com>: Introduce CordRepBtreeReader CordRepBtreeReader provides forward navigation on cord btrees with absolute positional (offset) context, iterating over btree data in absl::string_view chunks. PiperOrigin-RevId: 387585161 -- 206d298e2bccb998731995cb05717b31fa9d90ec by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 387577465 -- f07fafe8a400a4f5dfef186d1a3b61fb7f709fe5 by Abseil Team <absl-team@google.com>: This change adds debug-build enforcement that the inputs to absl::c_set_intersection are sorted, which is a prerequisite of std::set_intersection and required for correct operation of the algorithm. PiperOrigin-RevId: 387446657 -- 2ca15c6361bb758be7fb88cae82bf8489b4d3364 by Abseil Team <absl-team@google.com>: Change BadStatusOrAccess::what() to contain status_.ToString() This ensures that on uncaught exception propagation that would cause program termination, the message contains information on the error which caused the failure. Lazy initialization of what_ is a value judgement: if most callers are expected to call status() not what(), lazy initialization is correct. If most callers are expected to call what(), it should be initialized on construction to avoid atomic operation overhead. PiperOrigin-RevId: 387402243 -- 3e855084e104dc972a0c4385395e6d8e8465127f by Gennadiy Rozental <rogeeff@google.com>: LSC: Standardize access to GoogleTest flags on GTEST_FLAG_GET/GTEST_FLAG_SET This change is necessary to move Googletest flags out of the testing:: namespace without breaking code. These new macros will continue to be required for code that needs to work both inside Google's monorepo and outside in OSS, but can be used anywhere inside the monorepo. PiperOrigin-RevId: 387396025 -- 1ccf5895a15059ef689af5c4817d7b84f73190be by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 387388496 GitOrigin-RevId: e1a0989213908927f05002ab7697955ad7dc5632 Change-Id: I3606d9ce29d909a3555e662e9df564202cf5068d
4 years ago
using ::testing::HasSubstr;
using ::testing::Ne;
using ::testing::Not;
using ::testing::Pointee;
using ::testing::VariantWith;
#ifdef GTEST_HAS_STATUS_MATCHERS
using ::testing::status::IsOk;
using ::testing::status::IsOkAndHolds;
#else // GTEST_HAS_STATUS_MATCHERS
inline const ::absl::Status& GetStatus(const ::absl::Status& status) {
return status;
}
template <typename T>
inline const ::absl::Status& GetStatus(const ::absl::StatusOr<T>& status) {
return status.status();
}
// Monomorphic implementation of matcher IsOkAndHolds(m). StatusOrType is a
// reference to StatusOr<T>.
template <typename StatusOrType>
class IsOkAndHoldsMatcherImpl
: public ::testing::MatcherInterface<StatusOrType> {
public:
typedef
typename std::remove_reference<StatusOrType>::type::value_type value_type;
template <typename InnerMatcher>
explicit IsOkAndHoldsMatcherImpl(InnerMatcher&& inner_matcher)
: inner_matcher_(::testing::SafeMatcherCast<const value_type&>(
std::forward<InnerMatcher>(inner_matcher))) {}
void DescribeTo(std::ostream* os) const override {
*os << "is OK and has a value that ";
inner_matcher_.DescribeTo(os);
}
void DescribeNegationTo(std::ostream* os) const override {
*os << "isn't OK or has a value that ";
inner_matcher_.DescribeNegationTo(os);
}
bool MatchAndExplain(
StatusOrType actual_value,
::testing::MatchResultListener* result_listener) const override {
if (!actual_value.ok()) {
*result_listener << "which has status " << actual_value.status();
return false;
}
::testing::StringMatchResultListener inner_listener;
const bool matches =
inner_matcher_.MatchAndExplain(*actual_value, &inner_listener);
const std::string inner_explanation = inner_listener.str();
if (!inner_explanation.empty()) {
*result_listener << "which contains value "
<< ::testing::PrintToString(*actual_value) << ", "
<< inner_explanation;
}
return matches;
}
private:
const ::testing::Matcher<const value_type&> inner_matcher_;
};
// Implements IsOkAndHolds(m) as a polymorphic matcher.
template <typename InnerMatcher>
class IsOkAndHoldsMatcher {
public:
explicit IsOkAndHoldsMatcher(InnerMatcher inner_matcher)
: inner_matcher_(std::move(inner_matcher)) {}
// Converts this polymorphic matcher to a monomorphic matcher of the
// given type. StatusOrType can be either StatusOr<T> or a
// reference to StatusOr<T>.
template <typename StatusOrType>
operator ::testing::Matcher<StatusOrType>() const { // NOLINT
return ::testing::Matcher<StatusOrType>(
new IsOkAndHoldsMatcherImpl<const StatusOrType&>(inner_matcher_));
}
private:
const InnerMatcher inner_matcher_;
};
// Monomorphic implementation of matcher IsOk() for a given type T.
// T can be Status, StatusOr<>, or a reference to either of them.
template <typename T>
class MonoIsOkMatcherImpl : public ::testing::MatcherInterface<T> {
public:
void DescribeTo(std::ostream* os) const override { *os << "is OK"; }
void DescribeNegationTo(std::ostream* os) const override {
*os << "is not OK";
}
bool MatchAndExplain(T actual_value,
::testing::MatchResultListener*) const override {
return GetStatus(actual_value).ok();
}
};
// Implements IsOk() as a polymorphic matcher.
class IsOkMatcher {
public:
template <typename T>
operator ::testing::Matcher<T>() const { // NOLINT
return ::testing::Matcher<T>(new MonoIsOkMatcherImpl<T>());
}
};
// Macros for testing the results of functions that return absl::Status or
// absl::StatusOr<T> (for any type T).
#define EXPECT_OK(expression) EXPECT_THAT(expression, IsOk())
// Returns a gMock matcher that matches a StatusOr<> whose status is
// OK and whose value matches the inner matcher.
template <typename InnerMatcher>
IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type> IsOkAndHolds(
InnerMatcher&& inner_matcher) {
return IsOkAndHoldsMatcher<typename std::decay<InnerMatcher>::type>(
std::forward<InnerMatcher>(inner_matcher));
}
// Returns a gMock matcher that matches a Status or StatusOr<> which is OK.
inline IsOkMatcher IsOk() { return IsOkMatcher(); }
#endif // GTEST_HAS_STATUS_MATCHERS
struct CopyDetector {
CopyDetector() = default;
explicit CopyDetector(int xx) : x(xx) {}
CopyDetector(CopyDetector&& d) noexcept
: x(d.x), copied(false), moved(true) {}
CopyDetector(const CopyDetector& d) : x(d.x), copied(true), moved(false) {}
CopyDetector& operator=(const CopyDetector& c) {
x = c.x;
copied = true;
moved = false;
return *this;
}
CopyDetector& operator=(CopyDetector&& c) noexcept {
x = c.x;
copied = false;
moved = true;
return *this;
}
int x = 0;
bool copied = false;
bool moved = false;
};
testing::Matcher<const CopyDetector&> CopyDetectorHas(int a, bool b, bool c) {
return AllOf(Field(&CopyDetector::x, a), Field(&CopyDetector::moved, b),
Field(&CopyDetector::copied, c));
}
class Base1 {
public:
virtual ~Base1() {}
int pad;
};
class Base2 {
public:
virtual ~Base2() {}
int yetotherpad;
};
class Derived : public Base1, public Base2 {
public:
virtual ~Derived() {}
int evenmorepad;
};
class CopyNoAssign {
public:
explicit CopyNoAssign(int value) : foo(value) {}
CopyNoAssign(const CopyNoAssign& other) : foo(other.foo) {}
int foo;
private:
const CopyNoAssign& operator=(const CopyNoAssign&);
};
absl::StatusOr<std::unique_ptr<int>> ReturnUniquePtr() {
// Uses implicit constructor from T&&
return absl::make_unique<int>(0);
}
TEST(StatusOr, ElementType) {
static_assert(std::is_same<absl::StatusOr<int>::value_type, int>(), "");
static_assert(std::is_same<absl::StatusOr<char>::value_type, char>(), "");
}
TEST(StatusOr, TestMoveOnlyInitialization) {
absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
ASSERT_TRUE(thing.ok());
EXPECT_EQ(0, **thing);
int* previous = thing->get();
thing = ReturnUniquePtr();
EXPECT_TRUE(thing.ok());
EXPECT_EQ(0, **thing);
EXPECT_NE(previous, thing->get());
}
TEST(StatusOr, TestMoveOnlyValueExtraction) {
absl::StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
ASSERT_TRUE(thing.ok());
std::unique_ptr<int> ptr = *std::move(thing);
EXPECT_EQ(0, *ptr);
thing = std::move(ptr);
ptr = std::move(*thing);
EXPECT_EQ(0, *ptr);
}
TEST(StatusOr, TestMoveOnlyInitializationFromTemporaryByValueOrDie) {
std::unique_ptr<int> ptr(*ReturnUniquePtr());
EXPECT_EQ(0, *ptr);
}
TEST(StatusOr, TestValueOrDieOverloadForConstTemporary) {
static_assert(
Export of internal Abseil changes -- e1a0989213908927f05002ab7697955ad7dc5632 by Martijn Vels <mvels@google.com>: Introduce CordRepBtreeReader CordRepBtreeReader provides forward navigation on cord btrees with absolute positional (offset) context, iterating over btree data in absl::string_view chunks. PiperOrigin-RevId: 387585161 -- 206d298e2bccb998731995cb05717b31fa9d90ec by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 387577465 -- f07fafe8a400a4f5dfef186d1a3b61fb7f709fe5 by Abseil Team <absl-team@google.com>: This change adds debug-build enforcement that the inputs to absl::c_set_intersection are sorted, which is a prerequisite of std::set_intersection and required for correct operation of the algorithm. PiperOrigin-RevId: 387446657 -- 2ca15c6361bb758be7fb88cae82bf8489b4d3364 by Abseil Team <absl-team@google.com>: Change BadStatusOrAccess::what() to contain status_.ToString() This ensures that on uncaught exception propagation that would cause program termination, the message contains information on the error which caused the failure. Lazy initialization of what_ is a value judgement: if most callers are expected to call status() not what(), lazy initialization is correct. If most callers are expected to call what(), it should be initialized on construction to avoid atomic operation overhead. PiperOrigin-RevId: 387402243 -- 3e855084e104dc972a0c4385395e6d8e8465127f by Gennadiy Rozental <rogeeff@google.com>: LSC: Standardize access to GoogleTest flags on GTEST_FLAG_GET/GTEST_FLAG_SET This change is necessary to move Googletest flags out of the testing:: namespace without breaking code. These new macros will continue to be required for code that needs to work both inside Google's monorepo and outside in OSS, but can be used anywhere inside the monorepo. PiperOrigin-RevId: 387396025 -- 1ccf5895a15059ef689af5c4817d7b84f73190be by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 387388496 GitOrigin-RevId: e1a0989213908927f05002ab7697955ad7dc5632 Change-Id: I3606d9ce29d909a3555e662e9df564202cf5068d
4 years ago
std::is_same<
const int&&,
decltype(std::declval<const absl::StatusOr<int>&&>().value())>(),
"value() for const temporaries should return const T&&");
}
TEST(StatusOr, TestMoveOnlyConversion) {
absl::StatusOr<std::unique_ptr<const int>> const_thing(ReturnUniquePtr());
EXPECT_TRUE(const_thing.ok());
EXPECT_EQ(0, **const_thing);
// Test rvalue converting assignment
const int* const_previous = const_thing->get();
const_thing = ReturnUniquePtr();
EXPECT_TRUE(const_thing.ok());
EXPECT_EQ(0, **const_thing);
EXPECT_NE(const_previous, const_thing->get());
}
TEST(StatusOr, TestMoveOnlyVector) {
// Sanity check that absl::StatusOr<MoveOnly> works in vector.
std::vector<absl::StatusOr<std::unique_ptr<int>>> vec;
vec.push_back(ReturnUniquePtr());
vec.resize(2);
auto another_vec = std::move(vec);
EXPECT_EQ(0, **another_vec[0]);
EXPECT_EQ(absl::UnknownError(""), another_vec[1].status());
}
TEST(StatusOr, TestDefaultCtor) {
absl::StatusOr<int> thing;
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOr, StatusCtorForwards) {
absl::Status status(absl::StatusCode::kInternal, "Some error");
EXPECT_EQ(absl::StatusOr<int>(status).status().message(), "Some error");
EXPECT_EQ(status.message(), "Some error");
EXPECT_EQ(absl::StatusOr<int>(std::move(status)).status().message(),
"Some error");
EXPECT_NE(status.message(), "Some error");
}
Export of internal Abseil changes -- e1a0989213908927f05002ab7697955ad7dc5632 by Martijn Vels <mvels@google.com>: Introduce CordRepBtreeReader CordRepBtreeReader provides forward navigation on cord btrees with absolute positional (offset) context, iterating over btree data in absl::string_view chunks. PiperOrigin-RevId: 387585161 -- 206d298e2bccb998731995cb05717b31fa9d90ec by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 387577465 -- f07fafe8a400a4f5dfef186d1a3b61fb7f709fe5 by Abseil Team <absl-team@google.com>: This change adds debug-build enforcement that the inputs to absl::c_set_intersection are sorted, which is a prerequisite of std::set_intersection and required for correct operation of the algorithm. PiperOrigin-RevId: 387446657 -- 2ca15c6361bb758be7fb88cae82bf8489b4d3364 by Abseil Team <absl-team@google.com>: Change BadStatusOrAccess::what() to contain status_.ToString() This ensures that on uncaught exception propagation that would cause program termination, the message contains information on the error which caused the failure. Lazy initialization of what_ is a value judgement: if most callers are expected to call status() not what(), lazy initialization is correct. If most callers are expected to call what(), it should be initialized on construction to avoid atomic operation overhead. PiperOrigin-RevId: 387402243 -- 3e855084e104dc972a0c4385395e6d8e8465127f by Gennadiy Rozental <rogeeff@google.com>: LSC: Standardize access to GoogleTest flags on GTEST_FLAG_GET/GTEST_FLAG_SET This change is necessary to move Googletest flags out of the testing:: namespace without breaking code. These new macros will continue to be required for code that needs to work both inside Google's monorepo and outside in OSS, but can be used anywhere inside the monorepo. PiperOrigin-RevId: 387396025 -- 1ccf5895a15059ef689af5c4817d7b84f73190be by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 387388496 GitOrigin-RevId: e1a0989213908927f05002ab7697955ad7dc5632 Change-Id: I3606d9ce29d909a3555e662e9df564202cf5068d
4 years ago
TEST(BadStatusOrAccessTest, CopyConstructionWhatOk) {
absl::Status error =
absl::InternalError("some arbitrary message too big for the sso buffer");
absl::BadStatusOrAccess e1{error};
absl::BadStatusOrAccess e2{e1};
EXPECT_THAT(e1.what(), HasSubstr(error.ToString()));
EXPECT_THAT(e2.what(), HasSubstr(error.ToString()));
}
TEST(BadStatusOrAccessTest, CopyAssignmentWhatOk) {
absl::Status error =
absl::InternalError("some arbitrary message too big for the sso buffer");
absl::BadStatusOrAccess e1{error};
absl::BadStatusOrAccess e2{absl::InternalError("other")};
e2 = e1;
EXPECT_THAT(e1.what(), HasSubstr(error.ToString()));
EXPECT_THAT(e2.what(), HasSubstr(error.ToString()));
}
TEST(BadStatusOrAccessTest, MoveConstructionWhatOk) {
absl::Status error =
absl::InternalError("some arbitrary message too big for the sso buffer");
absl::BadStatusOrAccess e1{error};
absl::BadStatusOrAccess e2{std::move(e1)};
EXPECT_THAT(e2.what(), HasSubstr(error.ToString()));
}
TEST(BadStatusOrAccessTest, MoveAssignmentWhatOk) {
absl::Status error =
absl::InternalError("some arbitrary message too big for the sso buffer");
absl::BadStatusOrAccess e1{error};
absl::BadStatusOrAccess e2{absl::InternalError("other")};
e2 = std::move(e1);
EXPECT_THAT(e2.what(), HasSubstr(error.ToString()));
}
// Define `EXPECT_DEATH_OR_THROW` to test the behavior of `StatusOr::value`,
// which either throws `BadStatusOrAccess` or `LOG(FATAL)` based on whether
// exceptions are enabled.
#ifdef ABSL_HAVE_EXCEPTIONS
Export of internal Abseil changes -- e1a0989213908927f05002ab7697955ad7dc5632 by Martijn Vels <mvels@google.com>: Introduce CordRepBtreeReader CordRepBtreeReader provides forward navigation on cord btrees with absolute positional (offset) context, iterating over btree data in absl::string_view chunks. PiperOrigin-RevId: 387585161 -- 206d298e2bccb998731995cb05717b31fa9d90ec by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 387577465 -- f07fafe8a400a4f5dfef186d1a3b61fb7f709fe5 by Abseil Team <absl-team@google.com>: This change adds debug-build enforcement that the inputs to absl::c_set_intersection are sorted, which is a prerequisite of std::set_intersection and required for correct operation of the algorithm. PiperOrigin-RevId: 387446657 -- 2ca15c6361bb758be7fb88cae82bf8489b4d3364 by Abseil Team <absl-team@google.com>: Change BadStatusOrAccess::what() to contain status_.ToString() This ensures that on uncaught exception propagation that would cause program termination, the message contains information on the error which caused the failure. Lazy initialization of what_ is a value judgement: if most callers are expected to call status() not what(), lazy initialization is correct. If most callers are expected to call what(), it should be initialized on construction to avoid atomic operation overhead. PiperOrigin-RevId: 387402243 -- 3e855084e104dc972a0c4385395e6d8e8465127f by Gennadiy Rozental <rogeeff@google.com>: LSC: Standardize access to GoogleTest flags on GTEST_FLAG_GET/GTEST_FLAG_SET This change is necessary to move Googletest flags out of the testing:: namespace without breaking code. These new macros will continue to be required for code that needs to work both inside Google's monorepo and outside in OSS, but can be used anywhere inside the monorepo. PiperOrigin-RevId: 387396025 -- 1ccf5895a15059ef689af5c4817d7b84f73190be by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 387388496 GitOrigin-RevId: e1a0989213908927f05002ab7697955ad7dc5632 Change-Id: I3606d9ce29d909a3555e662e9df564202cf5068d
4 years ago
#define EXPECT_DEATH_OR_THROW(statement, status_) \
EXPECT_THROW( \
{ \
try { \
statement; \
} catch (const absl::BadStatusOrAccess& e) { \
EXPECT_EQ(e.status(), status_); \
EXPECT_THAT(e.what(), HasSubstr(e.status().ToString())); \
throw; \
} \
}, \
absl::BadStatusOrAccess);
#else // ABSL_HAVE_EXCEPTIONS
#define EXPECT_DEATH_OR_THROW(statement, status) \
EXPECT_DEATH_IF_SUPPORTED(statement, status.ToString());
#endif // ABSL_HAVE_EXCEPTIONS
TEST(StatusOrDeathTest, TestDefaultCtorValue) {
absl::StatusOr<int> thing;
EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
const absl::StatusOr<int> thing2;
EXPECT_DEATH_OR_THROW(thing2.value(), absl::UnknownError(""));
}
TEST(StatusOrDeathTest, TestValueNotOk) {
absl::StatusOr<int> thing(absl::CancelledError());
EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
}
TEST(StatusOrDeathTest, TestValueNotOkConst) {
const absl::StatusOr<int> thing(absl::UnknownError(""));
EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
}
TEST(StatusOrDeathTest, TestPointerDefaultCtorValue) {
absl::StatusOr<int*> thing;
EXPECT_DEATH_OR_THROW(thing.value(), absl::UnknownError(""));
}
TEST(StatusOrDeathTest, TestPointerValueNotOk) {
absl::StatusOr<int*> thing(absl::CancelledError());
EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
}
TEST(StatusOrDeathTest, TestPointerValueNotOkConst) {
const absl::StatusOr<int*> thing(absl::CancelledError());
EXPECT_DEATH_OR_THROW(thing.value(), absl::CancelledError());
}
#if GTEST_HAS_DEATH_TEST
TEST(StatusOrDeathTest, TestStatusCtorStatusOk) {
EXPECT_DEBUG_DEATH(
{
// This will DCHECK
absl::StatusOr<int> thing(absl::OkStatus());
// In optimized mode, we are actually going to get error::INTERNAL for
// status here, rather than crashing, so check that.
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kInternal);
},
"An OK status is not a valid constructor argument");
}
TEST(StatusOrDeathTest, TestPointerStatusCtorStatusOk) {
EXPECT_DEBUG_DEATH(
{
absl::StatusOr<int*> thing(absl::OkStatus());
// In optimized mode, we are actually going to get error::INTERNAL for
// status here, rather than crashing, so check that.
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kInternal);
},
"An OK status is not a valid constructor argument");
}
#endif
TEST(StatusOr, ValueAccessor) {
const int kIntValue = 110;
{
absl::StatusOr<int> status_or(kIntValue);
EXPECT_EQ(kIntValue, status_or.value());
EXPECT_EQ(kIntValue, std::move(status_or).value());
}
{
absl::StatusOr<CopyDetector> status_or(kIntValue);
EXPECT_THAT(status_or,
IsOkAndHolds(CopyDetectorHas(kIntValue, false, false)));
CopyDetector copy_detector = status_or.value();
EXPECT_THAT(copy_detector, CopyDetectorHas(kIntValue, false, true));
copy_detector = std::move(status_or).value();
EXPECT_THAT(copy_detector, CopyDetectorHas(kIntValue, true, false));
}
}
TEST(StatusOr, BadValueAccess) {
const absl::Status kError = absl::CancelledError("message");
absl::StatusOr<int> status_or(kError);
EXPECT_DEATH_OR_THROW(status_or.value(), kError);
}
TEST(StatusOr, TestStatusCtor) {
absl::StatusOr<int> thing(absl::CancelledError());
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestValueCtor) {
const int kI = 4;
const absl::StatusOr<int> thing(kI);
EXPECT_TRUE(thing.ok());
EXPECT_EQ(kI, *thing);
}
struct Foo {
const int x;
explicit Foo(int y) : x(y) {}
};
TEST(StatusOr, InPlaceConstruction) {
EXPECT_THAT(absl::StatusOr<Foo>(absl::in_place, 10),
IsOkAndHolds(Field(&Foo::x, 10)));
}
struct InPlaceHelper {
InPlaceHelper(std::initializer_list<int> xs, std::unique_ptr<int> yy)
: x(xs), y(std::move(yy)) {}
const std::vector<int> x;
std::unique_ptr<int> y;
};
TEST(StatusOr, InPlaceInitListConstruction) {
absl::StatusOr<InPlaceHelper> status_or(absl::in_place, {10, 11, 12},
absl::make_unique<int>(13));
EXPECT_THAT(status_or, IsOkAndHolds(AllOf(
Field(&InPlaceHelper::x, ElementsAre(10, 11, 12)),
Field(&InPlaceHelper::y, Pointee(13)))));
}
TEST(StatusOr, Emplace) {
absl::StatusOr<Foo> status_or_foo(10);
status_or_foo.emplace(20);
EXPECT_THAT(status_or_foo, IsOkAndHolds(Field(&Foo::x, 20)));
status_or_foo = absl::InvalidArgumentError("msg");
EXPECT_FALSE(status_or_foo.ok());
EXPECT_EQ(status_or_foo.status().code(), absl::StatusCode::kInvalidArgument);
EXPECT_EQ(status_or_foo.status().message(), "msg");
status_or_foo.emplace(20);
EXPECT_THAT(status_or_foo, IsOkAndHolds(Field(&Foo::x, 20)));
}
TEST(StatusOr, EmplaceInitializerList) {
absl::StatusOr<InPlaceHelper> status_or(absl::in_place, {10, 11, 12},
absl::make_unique<int>(13));
status_or.emplace({1, 2, 3}, absl::make_unique<int>(4));
EXPECT_THAT(status_or,
IsOkAndHolds(AllOf(Field(&InPlaceHelper::x, ElementsAre(1, 2, 3)),
Field(&InPlaceHelper::y, Pointee(4)))));
status_or = absl::InvalidArgumentError("msg");
EXPECT_FALSE(status_or.ok());
EXPECT_EQ(status_or.status().code(), absl::StatusCode::kInvalidArgument);
EXPECT_EQ(status_or.status().message(), "msg");
status_or.emplace({1, 2, 3}, absl::make_unique<int>(4));
EXPECT_THAT(status_or,
IsOkAndHolds(AllOf(Field(&InPlaceHelper::x, ElementsAre(1, 2, 3)),
Field(&InPlaceHelper::y, Pointee(4)))));
}
TEST(StatusOr, TestCopyCtorStatusOk) {
const int kI = 4;
const absl::StatusOr<int> original(kI);
const absl::StatusOr<int> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(*original, *copy);
}
TEST(StatusOr, TestCopyCtorStatusNotOk) {
absl::StatusOr<int> original(absl::CancelledError());
absl::StatusOr<int> copy(original);
EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestCopyCtorNonAssignable) {
const int kI = 4;
CopyNoAssign value(kI);
absl::StatusOr<CopyNoAssign> original(value);
absl::StatusOr<CopyNoAssign> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(original->foo, copy->foo);
}
TEST(StatusOr, TestCopyCtorStatusOKConverting) {
const int kI = 4;
absl::StatusOr<int> original(kI);
absl::StatusOr<double> copy(original);
EXPECT_OK(copy.status());
EXPECT_DOUBLE_EQ(*original, *copy);
}
TEST(StatusOr, TestCopyCtorStatusNotOkConverting) {
absl::StatusOr<int> original(absl::CancelledError());
absl::StatusOr<double> copy(original);
EXPECT_EQ(copy.status(), original.status());
}
TEST(StatusOr, TestAssignmentStatusOk) {
// Copy assignmment
{
const auto p = std::make_shared<int>(17);
absl::StatusOr<std::shared_ptr<int>> source(p);
absl::StatusOr<std::shared_ptr<int>> target;
target = source;
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_EQ(p, *target);
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_EQ(p, *source);
}
// Move asssignment
{
const auto p = std::make_shared<int>(17);
absl::StatusOr<std::shared_ptr<int>> source(p);
absl::StatusOr<std::shared_ptr<int>> target;
target = std::move(source);
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_EQ(p, *target);
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_EQ(nullptr, *source);
}
}
TEST(StatusOr, TestAssignmentStatusNotOk) {
// Copy assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<int> target;
target = source;
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(expected, source.status());
}
// Move assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<int> target;
target = std::move(source);
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(source.status().code(), absl::StatusCode::kInternal);
}
}
TEST(StatusOr, TestAssignmentStatusOKConverting) {
// Copy assignment
{
const int kI = 4;
absl::StatusOr<int> source(kI);
absl::StatusOr<double> target;
target = source;
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_DOUBLE_EQ(kI, *target);
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_DOUBLE_EQ(kI, *source);
}
// Move assignment
{
const auto p = new int(17);
absl::StatusOr<std::unique_ptr<int>> source(absl::WrapUnique(p));
absl::StatusOr<std::shared_ptr<int>> target;
target = std::move(source);
ASSERT_TRUE(target.ok());
EXPECT_OK(target.status());
EXPECT_EQ(p, target->get());
ASSERT_TRUE(source.ok());
EXPECT_OK(source.status());
EXPECT_EQ(nullptr, source->get());
}
}
struct A {
int x;
};
struct ImplicitConstructibleFromA {
int x;
bool moved;
ImplicitConstructibleFromA(const A& a) // NOLINT
: x(a.x), moved(false) {}
ImplicitConstructibleFromA(A&& a) // NOLINT
: x(a.x), moved(true) {}
};
TEST(StatusOr, ImplicitConvertingConstructor) {
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromA>>(
absl::StatusOr<A>(A{11})),
IsOkAndHolds(AllOf(Field(&ImplicitConstructibleFromA::x, 11),
Field(&ImplicitConstructibleFromA::moved, true))));
absl::StatusOr<A> a(A{12});
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromA>>(a),
IsOkAndHolds(AllOf(Field(&ImplicitConstructibleFromA::x, 12),
Field(&ImplicitConstructibleFromA::moved, false))));
}
struct ExplicitConstructibleFromA {
int x;
bool moved;
explicit ExplicitConstructibleFromA(const A& a) : x(a.x), moved(false) {}
explicit ExplicitConstructibleFromA(A&& a) : x(a.x), moved(true) {}
};
TEST(StatusOr, ExplicitConvertingConstructor) {
EXPECT_FALSE(
(std::is_convertible<const absl::StatusOr<A>&,
absl::StatusOr<ExplicitConstructibleFromA>>::value));
EXPECT_FALSE(
(std::is_convertible<absl::StatusOr<A>&&,
absl::StatusOr<ExplicitConstructibleFromA>>::value));
EXPECT_THAT(
absl::StatusOr<ExplicitConstructibleFromA>(absl::StatusOr<A>(A{11})),
IsOkAndHolds(AllOf(Field(&ExplicitConstructibleFromA::x, 11),
Field(&ExplicitConstructibleFromA::moved, true))));
absl::StatusOr<A> a(A{12});
EXPECT_THAT(
absl::StatusOr<ExplicitConstructibleFromA>(a),
IsOkAndHolds(AllOf(Field(&ExplicitConstructibleFromA::x, 12),
Field(&ExplicitConstructibleFromA::moved, false))));
}
struct ImplicitConstructibleFromBool {
ImplicitConstructibleFromBool(bool y) : x(y) {} // NOLINT
bool x = false;
};
struct ConvertibleToBool {
explicit ConvertibleToBool(bool y) : x(y) {}
operator bool() const { return x; } // NOLINT
bool x = false;
};
TEST(StatusOr, ImplicitBooleanConstructionWithImplicitCasts) {
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<ImplicitConstructibleFromBool>>(
absl::StatusOr<bool>(false)),
IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
EXPECT_FALSE((std::is_convertible<
absl::StatusOr<ConvertibleToBool>,
absl::StatusOr<ImplicitConstructibleFromBool>>::value));
}
TEST(StatusOr, BooleanConstructionWithImplicitCasts) {
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<ConvertibleToBool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<bool>(false)},
IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<bool>(absl::InvalidArgumentError(""))},
Not(IsOk()));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<ConvertibleToBool>(ConvertibleToBool{false})},
IsOkAndHolds(Field(&ImplicitConstructibleFromBool::x, false)));
EXPECT_THAT(
absl::StatusOr<ImplicitConstructibleFromBool>{
absl::StatusOr<ConvertibleToBool>(absl::InvalidArgumentError(""))},
Not(IsOk()));
}
TEST(StatusOr, ConstImplicitCast) {
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<bool>>(
absl::StatusOr<const bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<bool>>(
absl::StatusOr<const bool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const bool>>(
absl::StatusOr<bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const bool>>(
absl::StatusOr<bool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<const std::string>>(
absl::StatusOr<std::string>("foo")),
IsOkAndHolds("foo"));
EXPECT_THAT(absl::implicit_cast<absl::StatusOr<std::string>>(
absl::StatusOr<const std::string>("foo")),
IsOkAndHolds("foo"));
EXPECT_THAT(
absl::implicit_cast<absl::StatusOr<std::shared_ptr<const std::string>>>(
absl::StatusOr<std::shared_ptr<std::string>>(
std::make_shared<std::string>("foo"))),
IsOkAndHolds(Pointee(std::string("foo"))));
}
TEST(StatusOr, ConstExplicitConstruction) {
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<const bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<bool>(absl::StatusOr<const bool>(false)),
IsOkAndHolds(false));
EXPECT_THAT(absl::StatusOr<const bool>(absl::StatusOr<bool>(true)),
IsOkAndHolds(true));
EXPECT_THAT(absl::StatusOr<const bool>(absl::StatusOr<bool>(false)),
IsOkAndHolds(false));
}
struct ExplicitConstructibleFromInt {
int x;
explicit ExplicitConstructibleFromInt(int y) : x(y) {}
};
TEST(StatusOr, ExplicitConstruction) {
EXPECT_THAT(absl::StatusOr<ExplicitConstructibleFromInt>(10),
IsOkAndHolds(Field(&ExplicitConstructibleFromInt::x, 10)));
}
TEST(StatusOr, ImplicitConstruction) {
// Check implicit casting works.
auto status_or =
absl::implicit_cast<absl::StatusOr<absl::variant<int, std::string>>>(10);
EXPECT_THAT(status_or, IsOkAndHolds(VariantWith<int>(10)));
}
TEST(StatusOr, ImplicitConstructionFromInitliazerList) {
// Note: dropping the explicit std::initializer_list<int> is not supported
// by absl::StatusOr or absl::optional.
auto status_or =
absl::implicit_cast<absl::StatusOr<std::vector<int>>>({{10, 20, 30}});
EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
}
TEST(StatusOr, UniquePtrImplicitConstruction) {
auto status_or = absl::implicit_cast<absl::StatusOr<std::unique_ptr<Base1>>>(
absl::make_unique<Derived>());
EXPECT_THAT(status_or, IsOkAndHolds(Ne(nullptr)));
}
TEST(StatusOr, NestedStatusOrCopyAndMoveConstructorTests) {
absl::StatusOr<absl::StatusOr<CopyDetector>> status_or = CopyDetector(10);
absl::StatusOr<absl::StatusOr<CopyDetector>> status_error =
absl::InvalidArgumentError("foo");
EXPECT_THAT(status_or,
IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::StatusOr<CopyDetector>> a = status_or;
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
absl::StatusOr<absl::StatusOr<CopyDetector>> a_err = status_error;
EXPECT_THAT(a_err, Not(IsOk()));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref = status_or;
absl::StatusOr<absl::StatusOr<CopyDetector>> b = cref; // NOLINT
EXPECT_THAT(b, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref_err = status_error;
absl::StatusOr<absl::StatusOr<CopyDetector>> b_err = cref_err; // NOLINT
EXPECT_THAT(b_err, Not(IsOk()));
absl::StatusOr<absl::StatusOr<CopyDetector>> c = std::move(status_or);
EXPECT_THAT(c, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::StatusOr<CopyDetector>> c_err = std::move(status_error);
EXPECT_THAT(c_err, Not(IsOk()));
}
TEST(StatusOr, NestedStatusOrCopyAndMoveAssignment) {
absl::StatusOr<absl::StatusOr<CopyDetector>> status_or = CopyDetector(10);
absl::StatusOr<absl::StatusOr<CopyDetector>> status_error =
absl::InvalidArgumentError("foo");
absl::StatusOr<absl::StatusOr<CopyDetector>> a;
a = status_or;
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
a = status_error;
EXPECT_THAT(a, Not(IsOk()));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref = status_or;
a = cref;
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::StatusOr<CopyDetector>>& cref_err = status_error;
a = cref_err;
EXPECT_THAT(a, Not(IsOk()));
a = std::move(status_or);
EXPECT_THAT(a, IsOkAndHolds(IsOkAndHolds(CopyDetectorHas(10, true, false))));
a = std::move(status_error);
EXPECT_THAT(a, Not(IsOk()));
}
struct Copyable {
Copyable() {}
Copyable(const Copyable&) {}
Copyable& operator=(const Copyable&) { return *this; }
};
struct MoveOnly {
MoveOnly() {}
MoveOnly(MoveOnly&&) {}
MoveOnly& operator=(MoveOnly&&) { return *this; }
};
struct NonMovable {
NonMovable() {}
NonMovable(const NonMovable&) = delete;
NonMovable(NonMovable&&) = delete;
NonMovable& operator=(const NonMovable&) = delete;
NonMovable& operator=(NonMovable&&) = delete;
};
TEST(StatusOr, CopyAndMoveAbility) {
EXPECT_TRUE(std::is_copy_constructible<Copyable>::value);
EXPECT_TRUE(std::is_copy_assignable<Copyable>::value);
EXPECT_TRUE(std::is_move_constructible<Copyable>::value);
EXPECT_TRUE(std::is_move_assignable<Copyable>::value);
EXPECT_FALSE(std::is_copy_constructible<MoveOnly>::value);
EXPECT_FALSE(std::is_copy_assignable<MoveOnly>::value);
EXPECT_TRUE(std::is_move_constructible<MoveOnly>::value);
EXPECT_TRUE(std::is_move_assignable<MoveOnly>::value);
EXPECT_FALSE(std::is_copy_constructible<NonMovable>::value);
EXPECT_FALSE(std::is_copy_assignable<NonMovable>::value);
EXPECT_FALSE(std::is_move_constructible<NonMovable>::value);
EXPECT_FALSE(std::is_move_assignable<NonMovable>::value);
}
TEST(StatusOr, StatusOrAnyCopyAndMoveConstructorTests) {
absl::StatusOr<absl::any> status_or = CopyDetector(10);
absl::StatusOr<absl::any> status_error = absl::InvalidArgumentError("foo");
EXPECT_THAT(
status_or,
IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::any> a = status_or;
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
absl::StatusOr<absl::any> a_err = status_error;
EXPECT_THAT(a_err, Not(IsOk()));
const absl::StatusOr<absl::any>& cref = status_or;
// No lint for no-change copy.
absl::StatusOr<absl::any> b = cref; // NOLINT
EXPECT_THAT(
b, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::any>& cref_err = status_error;
// No lint for no-change copy.
absl::StatusOr<absl::any> b_err = cref_err; // NOLINT
EXPECT_THAT(b_err, Not(IsOk()));
absl::StatusOr<absl::any> c = std::move(status_or);
EXPECT_THAT(
c, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
absl::StatusOr<absl::any> c_err = std::move(status_error);
EXPECT_THAT(c_err, Not(IsOk()));
}
TEST(StatusOr, StatusOrAnyCopyAndMoveAssignment) {
absl::StatusOr<absl::any> status_or = CopyDetector(10);
absl::StatusOr<absl::any> status_error = absl::InvalidArgumentError("foo");
absl::StatusOr<absl::any> a;
a = status_or;
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
a = status_error;
EXPECT_THAT(a, Not(IsOk()));
const absl::StatusOr<absl::any>& cref = status_or;
a = cref;
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, false, true))));
const absl::StatusOr<absl::any>& cref_err = status_error;
a = cref_err;
EXPECT_THAT(a, Not(IsOk()));
a = std::move(status_or);
EXPECT_THAT(
a, IsOkAndHolds(AnyWith<CopyDetector>(CopyDetectorHas(10, true, false))));
a = std::move(status_error);
EXPECT_THAT(a, Not(IsOk()));
}
TEST(StatusOr, StatusOrCopyAndMoveTestsConstructor) {
absl::StatusOr<CopyDetector> status_or(10);
ASSERT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(10, false, false)));
absl::StatusOr<CopyDetector> a(status_or);
EXPECT_THAT(a, IsOkAndHolds(CopyDetectorHas(10, false, true)));
const absl::StatusOr<CopyDetector>& cref = status_or;
absl::StatusOr<CopyDetector> b(cref); // NOLINT
EXPECT_THAT(b, IsOkAndHolds(CopyDetectorHas(10, false, true)));
absl::StatusOr<CopyDetector> c(std::move(status_or));
EXPECT_THAT(c, IsOkAndHolds(CopyDetectorHas(10, true, false)));
}
TEST(StatusOr, StatusOrCopyAndMoveTestsAssignment) {
absl::StatusOr<CopyDetector> status_or(10);
ASSERT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(10, false, false)));
absl::StatusOr<CopyDetector> a;
a = status_or;
EXPECT_THAT(a, IsOkAndHolds(CopyDetectorHas(10, false, true)));
const absl::StatusOr<CopyDetector>& cref = status_or;
absl::StatusOr<CopyDetector> b;
b = cref;
EXPECT_THAT(b, IsOkAndHolds(CopyDetectorHas(10, false, true)));
absl::StatusOr<CopyDetector> c;
c = std::move(status_or);
EXPECT_THAT(c, IsOkAndHolds(CopyDetectorHas(10, true, false)));
}
TEST(StatusOr, AbslAnyAssignment) {
EXPECT_FALSE((std::is_assignable<absl::StatusOr<absl::any>,
absl::StatusOr<int>>::value));
absl::StatusOr<absl::any> status_or;
status_or = absl::InvalidArgumentError("foo");
EXPECT_THAT(status_or, Not(IsOk()));
}
TEST(StatusOr, ImplicitAssignment) {
absl::StatusOr<absl::variant<int, std::string>> status_or;
status_or = 10;
EXPECT_THAT(status_or, IsOkAndHolds(VariantWith<int>(10)));
}
TEST(StatusOr, SelfDirectInitAssignment) {
absl::StatusOr<std::vector<int>> status_or = {{10, 20, 30}};
status_or = *status_or;
EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
}
TEST(StatusOr, ImplicitCastFromInitializerList) {
absl::StatusOr<std::vector<int>> status_or = {{10, 20, 30}};
EXPECT_THAT(status_or, IsOkAndHolds(ElementsAre(10, 20, 30)));
}
TEST(StatusOr, UniquePtrImplicitAssignment) {
absl::StatusOr<std::unique_ptr<Base1>> status_or;
status_or = absl::make_unique<Derived>();
EXPECT_THAT(status_or, IsOkAndHolds(Ne(nullptr)));
}
TEST(StatusOr, Pointer) {
struct A {};
struct B : public A {};
struct C : private A {};
EXPECT_TRUE((std::is_constructible<absl::StatusOr<A*>, B*>::value));
EXPECT_TRUE((std::is_convertible<B*, absl::StatusOr<A*>>::value));
EXPECT_FALSE((std::is_constructible<absl::StatusOr<A*>, C*>::value));
EXPECT_FALSE((std::is_convertible<C*, absl::StatusOr<A*>>::value));
}
TEST(StatusOr, TestAssignmentStatusNotOkConverting) {
// Copy assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<double> target;
target = source;
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(expected, source.status());
}
// Move assignment
{
const absl::Status expected = absl::CancelledError();
absl::StatusOr<int> source(expected);
absl::StatusOr<double> target;
target = std::move(source);
EXPECT_FALSE(target.ok());
EXPECT_EQ(expected, target.status());
EXPECT_FALSE(source.ok());
EXPECT_EQ(source.status().code(), absl::StatusCode::kInternal);
}
}
TEST(StatusOr, SelfAssignment) {
// Copy-assignment, status OK
{
// A string long enough that it's likely to defeat any inline representation
// optimization.
const std::string long_str(128, 'a');
absl::StatusOr<std::string> so = long_str;
so = *&so;
ASSERT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(long_str, *so);
}
// Copy-assignment, error status
{
absl::StatusOr<int> so = absl::NotFoundError("taco");
so = *&so;
EXPECT_FALSE(so.ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
EXPECT_EQ(so.status().message(), "taco");
}
// Move-assignment with copyable type, status OK
{
absl::StatusOr<int> so = 17;
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
ASSERT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(17, *so);
}
// Move-assignment with copyable type, error status
{
absl::StatusOr<int> so = absl::NotFoundError("taco");
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
EXPECT_FALSE(so.ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
EXPECT_EQ(so.status().message(), "taco");
}
// Move-assignment with non-copyable type, status OK
{
const auto raw = new int(17);
absl::StatusOr<std::unique_ptr<int>> so = absl::WrapUnique(raw);
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
ASSERT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(raw, so->get());
}
// Move-assignment with non-copyable type, error status
{
absl::StatusOr<std::unique_ptr<int>> so = absl::NotFoundError("taco");
// Fool the compiler, which otherwise complains.
auto& same = so;
so = std::move(same);
EXPECT_FALSE(so.ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kNotFound);
EXPECT_EQ(so.status().message(), "taco");
}
}
// These types form the overload sets of the constructors and the assignment
// operators of `MockValue`. They distinguish construction from assignment,
// lvalue from rvalue.
struct FromConstructibleAssignableLvalue {};
struct FromConstructibleAssignableRvalue {};
struct FromImplicitConstructibleOnly {};
struct FromAssignableOnly {};
// This class is for testing the forwarding value assignments of `StatusOr`.
// `from_rvalue` indicates whether the constructor or the assignment taking
// rvalue reference is called. `from_assignment` indicates whether any
// assignment is called.
struct MockValue {
// Constructs `MockValue` from `FromConstructibleAssignableLvalue`.
MockValue(const FromConstructibleAssignableLvalue&) // NOLINT
: from_rvalue(false), assigned(false) {}
// Constructs `MockValue` from `FromConstructibleAssignableRvalue`.
MockValue(FromConstructibleAssignableRvalue&&) // NOLINT
: from_rvalue(true), assigned(false) {}
// Constructs `MockValue` from `FromImplicitConstructibleOnly`.
// `MockValue` is not assignable from `FromImplicitConstructibleOnly`.
MockValue(const FromImplicitConstructibleOnly&) // NOLINT
: from_rvalue(false), assigned(false) {}
// Assigns `FromConstructibleAssignableLvalue`.
MockValue& operator=(const FromConstructibleAssignableLvalue&) {
from_rvalue = false;
assigned = true;
return *this;
}
// Assigns `FromConstructibleAssignableRvalue` (rvalue only).
MockValue& operator=(FromConstructibleAssignableRvalue&&) {
from_rvalue = true;
assigned = true;
return *this;
}
// Assigns `FromAssignableOnly`, but not constructible from
// `FromAssignableOnly`.
MockValue& operator=(const FromAssignableOnly&) {
from_rvalue = false;
assigned = true;
return *this;
}
bool from_rvalue;
bool assigned;
};
// operator=(U&&)
TEST(StatusOr, PerfectForwardingAssignment) {
// U == T
constexpr int kValue1 = 10, kValue2 = 20;
absl::StatusOr<CopyDetector> status_or;
CopyDetector lvalue(kValue1);
status_or = lvalue;
EXPECT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(kValue1, false, true)));
status_or = CopyDetector(kValue2);
EXPECT_THAT(status_or, IsOkAndHolds(CopyDetectorHas(kValue2, true, false)));
// U != T
EXPECT_TRUE(
(std::is_assignable<absl::StatusOr<MockValue>&,
const FromConstructibleAssignableLvalue&>::value));
EXPECT_TRUE((std::is_assignable<absl::StatusOr<MockValue>&,
FromConstructibleAssignableLvalue&&>::value));
EXPECT_FALSE(
(std::is_assignable<absl::StatusOr<MockValue>&,
const FromConstructibleAssignableRvalue&>::value));
EXPECT_TRUE((std::is_assignable<absl::StatusOr<MockValue>&,
FromConstructibleAssignableRvalue&&>::value));
EXPECT_TRUE(
(std::is_assignable<absl::StatusOr<MockValue>&,
const FromImplicitConstructibleOnly&>::value));
EXPECT_FALSE((std::is_assignable<absl::StatusOr<MockValue>&,
const FromAssignableOnly&>::value));
absl::StatusOr<MockValue> from_lvalue(FromConstructibleAssignableLvalue{});
EXPECT_FALSE(from_lvalue->from_rvalue);
EXPECT_FALSE(from_lvalue->assigned);
from_lvalue = FromConstructibleAssignableLvalue{};
EXPECT_FALSE(from_lvalue->from_rvalue);
EXPECT_TRUE(from_lvalue->assigned);
absl::StatusOr<MockValue> from_rvalue(FromConstructibleAssignableRvalue{});
EXPECT_TRUE(from_rvalue->from_rvalue);
EXPECT_FALSE(from_rvalue->assigned);
from_rvalue = FromConstructibleAssignableRvalue{};
EXPECT_TRUE(from_rvalue->from_rvalue);
EXPECT_TRUE(from_rvalue->assigned);
absl::StatusOr<MockValue> from_implicit_constructible(
FromImplicitConstructibleOnly{});
EXPECT_FALSE(from_implicit_constructible->from_rvalue);
EXPECT_FALSE(from_implicit_constructible->assigned);
// construct a temporary `StatusOr` object and invoke the `StatusOr` move
// assignment operator.
from_implicit_constructible = FromImplicitConstructibleOnly{};
EXPECT_FALSE(from_implicit_constructible->from_rvalue);
EXPECT_FALSE(from_implicit_constructible->assigned);
}
TEST(StatusOr, TestStatus) {
absl::StatusOr<int> good(4);
EXPECT_TRUE(good.ok());
absl::StatusOr<int> bad(absl::CancelledError());
EXPECT_FALSE(bad.ok());
EXPECT_EQ(bad.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, OperatorStarRefQualifiers) {
static_assert(
std::is_same<const int&,
decltype(*std::declval<const absl::StatusOr<int>&>())>(),
"Unexpected ref-qualifiers");
static_assert(
std::is_same<int&, decltype(*std::declval<absl::StatusOr<int>&>())>(),
"Unexpected ref-qualifiers");
static_assert(
std::is_same<const int&&,
decltype(*std::declval<const absl::StatusOr<int>&&>())>(),
"Unexpected ref-qualifiers");
static_assert(
std::is_same<int&&, decltype(*std::declval<absl::StatusOr<int>&&>())>(),
"Unexpected ref-qualifiers");
}
TEST(StatusOr, OperatorStar) {
const absl::StatusOr<std::string> const_lvalue("hello");
EXPECT_EQ("hello", *const_lvalue);
absl::StatusOr<std::string> lvalue("hello");
EXPECT_EQ("hello", *lvalue);
// Note: Recall that std::move() is equivalent to a static_cast to an rvalue
// reference type.
const absl::StatusOr<std::string> const_rvalue("hello");
EXPECT_EQ("hello", *std::move(const_rvalue)); // NOLINT
absl::StatusOr<std::string> rvalue("hello");
EXPECT_EQ("hello", *std::move(rvalue));
}
TEST(StatusOr, OperatorArrowQualifiers) {
static_assert(
std::is_same<
const int*,
decltype(std::declval<const absl::StatusOr<int>&>().operator->())>(),
"Unexpected qualifiers");
static_assert(
std::is_same<
int*, decltype(std::declval<absl::StatusOr<int>&>().operator->())>(),
"Unexpected qualifiers");
static_assert(
std::is_same<
const int*,
decltype(std::declval<const absl::StatusOr<int>&&>().operator->())>(),
"Unexpected qualifiers");
static_assert(
std::is_same<
int*, decltype(std::declval<absl::StatusOr<int>&&>().operator->())>(),
"Unexpected qualifiers");
}
TEST(StatusOr, OperatorArrow) {
const absl::StatusOr<std::string> const_lvalue("hello");
EXPECT_EQ(std::string("hello"), const_lvalue->c_str());
absl::StatusOr<std::string> lvalue("hello");
EXPECT_EQ(std::string("hello"), lvalue->c_str());
}
TEST(StatusOr, RValueStatus) {
absl::StatusOr<int> so(absl::NotFoundError("taco"));
const absl::Status s = std::move(so).status();
EXPECT_EQ(s.code(), absl::StatusCode::kNotFound);
EXPECT_EQ(s.message(), "taco");
// Check that !ok() still implies !status().ok(), even after moving out of the
// object. See the note on the rvalue ref-qualified status method.
EXPECT_FALSE(so.ok()); // NOLINT
EXPECT_FALSE(so.status().ok());
EXPECT_EQ(so.status().code(), absl::StatusCode::kInternal);
EXPECT_EQ(so.status().message(), "Status accessed after move.");
}
TEST(StatusOr, TestValue) {
const int kI = 4;
absl::StatusOr<int> thing(kI);
EXPECT_EQ(kI, *thing);
}
TEST(StatusOr, TestValueConst) {
const int kI = 4;
const absl::StatusOr<int> thing(kI);
EXPECT_EQ(kI, *thing);
}
TEST(StatusOr, TestPointerDefaultCtor) {
absl::StatusOr<int*> thing;
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOr, TestPointerStatusCtor) {
absl::StatusOr<int*> thing(absl::CancelledError());
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerValueCtor) {
const int kI = 4;
// Construction from a non-null pointer
{
absl::StatusOr<const int*> so(&kI);
EXPECT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(&kI, *so);
}
// Construction from a null pointer constant
{
absl::StatusOr<const int*> so(nullptr);
EXPECT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(nullptr, *so);
}
// Construction from a non-literal null pointer
{
const int* const p = nullptr;
absl::StatusOr<const int*> so(p);
EXPECT_TRUE(so.ok());
EXPECT_OK(so.status());
EXPECT_EQ(nullptr, *so);
}
}
TEST(StatusOr, TestPointerCopyCtorStatusOk) {
const int kI = 0;
absl::StatusOr<const int*> original(&kI);
absl::StatusOr<const int*> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(*original, *copy);
}
TEST(StatusOr, TestPointerCopyCtorStatusNotOk) {
absl::StatusOr<int*> original(absl::CancelledError());
absl::StatusOr<int*> copy(original);
EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerCopyCtorStatusOKConverting) {
Derived derived;
absl::StatusOr<Derived*> original(&derived);
absl::StatusOr<Base2*> copy(original);
EXPECT_OK(copy.status());
EXPECT_EQ(static_cast<const Base2*>(*original), *copy);
}
TEST(StatusOr, TestPointerCopyCtorStatusNotOkConverting) {
absl::StatusOr<Derived*> original(absl::CancelledError());
absl::StatusOr<Base2*> copy(original);
EXPECT_EQ(copy.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerAssignmentStatusOk) {
const int kI = 0;
absl::StatusOr<const int*> source(&kI);
absl::StatusOr<const int*> target;
target = source;
EXPECT_OK(target.status());
EXPECT_EQ(*source, *target);
}
TEST(StatusOr, TestPointerAssignmentStatusNotOk) {
absl::StatusOr<int*> source(absl::CancelledError());
absl::StatusOr<int*> target;
target = source;
EXPECT_EQ(target.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerAssignmentStatusOKConverting) {
Derived derived;
absl::StatusOr<Derived*> source(&derived);
absl::StatusOr<Base2*> target;
target = source;
EXPECT_OK(target.status());
EXPECT_EQ(static_cast<const Base2*>(*source), *target);
}
TEST(StatusOr, TestPointerAssignmentStatusNotOkConverting) {
absl::StatusOr<Derived*> source(absl::CancelledError());
absl::StatusOr<Base2*> target;
target = source;
EXPECT_EQ(target.status(), source.status());
}
TEST(StatusOr, TestPointerStatus) {
const int kI = 0;
absl::StatusOr<const int*> good(&kI);
EXPECT_TRUE(good.ok());
absl::StatusOr<const int*> bad(absl::CancelledError());
EXPECT_EQ(bad.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestPointerValue) {
const int kI = 0;
absl::StatusOr<const int*> thing(&kI);
EXPECT_EQ(&kI, *thing);
}
TEST(StatusOr, TestPointerValueConst) {
const int kI = 0;
const absl::StatusOr<const int*> thing(&kI);
EXPECT_EQ(&kI, *thing);
}
TEST(StatusOr, StatusOrVectorOfUniquePointerCanReserveAndResize) {
using EvilType = std::vector<std::unique_ptr<int>>;
static_assert(std::is_copy_constructible<EvilType>::value, "");
std::vector<::absl::StatusOr<EvilType>> v(5);
v.reserve(v.capacity() + 10);
v.resize(v.capacity() + 10);
}
TEST(StatusOr, ConstPayload) {
// A reduced version of a problematic type found in the wild. All of the
// operations below should compile.
absl::StatusOr<const int> a;
// Copy-construction
absl::StatusOr<const int> b(a);
// Copy-assignment
EXPECT_FALSE(std::is_copy_assignable<absl::StatusOr<const int>>::value);
// Move-construction
absl::StatusOr<const int> c(std::move(a));
// Move-assignment
EXPECT_FALSE(std::is_move_assignable<absl::StatusOr<const int>>::value);
}
TEST(StatusOr, MapToStatusOrUniquePtr) {
// A reduced version of a problematic type found in the wild. All of the
// operations below should compile.
using MapType = std::map<std::string, absl::StatusOr<std::unique_ptr<int>>>;
MapType a;
// Move-construction
MapType b(std::move(a));
// Move-assignment
a = std::move(b);
}
TEST(StatusOr, ValueOrOk) {
const absl::StatusOr<int> status_or = 0;
EXPECT_EQ(status_or.value_or(-1), 0);
}
TEST(StatusOr, ValueOrDefault) {
const absl::StatusOr<int> status_or = absl::CancelledError();
EXPECT_EQ(status_or.value_or(-1), -1);
}
TEST(StatusOr, MoveOnlyValueOrOk) {
EXPECT_THAT(absl::StatusOr<std::unique_ptr<int>>(absl::make_unique<int>(0))
.value_or(absl::make_unique<int>(-1)),
Pointee(0));
}
TEST(StatusOr, MoveOnlyValueOrDefault) {
EXPECT_THAT(absl::StatusOr<std::unique_ptr<int>>(absl::CancelledError())
.value_or(absl::make_unique<int>(-1)),
Pointee(-1));
}
static absl::StatusOr<int> MakeStatus() { return 100; }
TEST(StatusOr, TestIgnoreError) { MakeStatus().IgnoreError(); }
TEST(StatusOr, EqualityOperator) {
constexpr int kNumCases = 4;
std::array<absl::StatusOr<int>, kNumCases> group1 = {
absl::StatusOr<int>(1), absl::StatusOr<int>(2),
absl::StatusOr<int>(absl::InvalidArgumentError("msg")),
absl::StatusOr<int>(absl::InternalError("msg"))};
std::array<absl::StatusOr<int>, kNumCases> group2 = {
absl::StatusOr<int>(1), absl::StatusOr<int>(2),
absl::StatusOr<int>(absl::InvalidArgumentError("msg")),
absl::StatusOr<int>(absl::InternalError("msg"))};
for (int i = 0; i < kNumCases; ++i) {
for (int j = 0; j < kNumCases; ++j) {
if (i == j) {
EXPECT_TRUE(group1[i] == group2[j]);
EXPECT_FALSE(group1[i] != group2[j]);
} else {
EXPECT_FALSE(group1[i] == group2[j]);
EXPECT_TRUE(group1[i] != group2[j]);
}
}
}
}
struct MyType {
bool operator==(const MyType&) const { return true; }
};
enum class ConvTraits { kNone = 0, kImplicit = 1, kExplicit = 2 };
// This class has conversion operator to `StatusOr<T>` based on value of
// `conv_traits`.
template <typename T, ConvTraits conv_traits = ConvTraits::kNone>
struct StatusOrConversionBase {};
template <typename T>
struct StatusOrConversionBase<T, ConvTraits::kImplicit> {
operator absl::StatusOr<T>() const& { // NOLINT
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
operator absl::StatusOr<T>() && { // NOLINT
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
};
template <typename T>
struct StatusOrConversionBase<T, ConvTraits::kExplicit> {
explicit operator absl::StatusOr<T>() const& {
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
explicit operator absl::StatusOr<T>() && {
return absl::InvalidArgumentError("conversion to absl::StatusOr");
}
};
// This class has conversion operator to `T` based on the value of
// `conv_traits`.
template <typename T, ConvTraits conv_traits = ConvTraits::kNone>
struct ConversionBase {};
template <typename T>
struct ConversionBase<T, ConvTraits::kImplicit> {
operator T() const& { return t; } // NOLINT
operator T() && { return std::move(t); } // NOLINT
T t;
};
template <typename T>
struct ConversionBase<T, ConvTraits::kExplicit> {
explicit operator T() const& { return t; }
explicit operator T() && { return std::move(t); }
T t;
};
// This class has conversion operator to `absl::Status` based on the value of
// `conv_traits`.
template <ConvTraits conv_traits = ConvTraits::kNone>
struct StatusConversionBase {};
template <>
struct StatusConversionBase<ConvTraits::kImplicit> {
operator absl::Status() const& { // NOLINT
return absl::InternalError("conversion to Status");
}
operator absl::Status() && { // NOLINT
return absl::InternalError("conversion to Status");
}
};
template <>
struct StatusConversionBase<ConvTraits::kExplicit> {
explicit operator absl::Status() const& { // NOLINT
return absl::InternalError("conversion to Status");
}
explicit operator absl::Status() && { // NOLINT
return absl::InternalError("conversion to Status");
}
};
static constexpr int kConvToStatus = 1;
static constexpr int kConvToStatusOr = 2;
static constexpr int kConvToT = 4;
static constexpr int kConvExplicit = 8;
constexpr ConvTraits GetConvTraits(int bit, int config) {
return (config & bit) == 0
? ConvTraits::kNone
: ((config & kConvExplicit) == 0 ? ConvTraits::kImplicit
: ConvTraits::kExplicit);
}
// This class conditionally has conversion operator to `absl::Status`, `T`,
// `StatusOr<T>`, based on values of the template parameters.
template <typename T, int config>
struct CustomType
: StatusOrConversionBase<T, GetConvTraits(kConvToStatusOr, config)>,
ConversionBase<T, GetConvTraits(kConvToT, config)>,
StatusConversionBase<GetConvTraits(kConvToStatus, config)> {};
struct ConvertibleToAnyStatusOr {
template <typename T>
operator absl::StatusOr<T>() const { // NOLINT
return absl::InvalidArgumentError("Conversion to absl::StatusOr");
}
};
// Test the rank of overload resolution for `StatusOr<T>` constructor and
// assignment, from highest to lowest:
// 1. T/Status
// 2. U that has conversion operator to absl::StatusOr<T>
// 3. U that is convertible to Status
// 4. U that is convertible to T
TEST(StatusOr, ConstructionFromT) {
// Construct absl::StatusOr<T> from T when T is convertible to
// absl::StatusOr<T>
{
ConvertibleToAnyStatusOr v;
absl::StatusOr<ConvertibleToAnyStatusOr> statusor(v);
EXPECT_TRUE(statusor.ok());
}
{
ConvertibleToAnyStatusOr v;
absl::StatusOr<ConvertibleToAnyStatusOr> statusor = v;
EXPECT_TRUE(statusor.ok());
}
// Construct absl::StatusOr<T> from T when T is explicitly convertible to
// Status
{
CustomType<MyType, kConvToStatus | kConvExplicit> v;
absl::StatusOr<CustomType<MyType, kConvToStatus | kConvExplicit>> statusor(
v);
EXPECT_TRUE(statusor.ok());
}
{
CustomType<MyType, kConvToStatus | kConvExplicit> v;
absl::StatusOr<CustomType<MyType, kConvToStatus | kConvExplicit>> statusor =
v;
EXPECT_TRUE(statusor.ok());
}
}
// Construct absl::StatusOr<T> from U when U is explicitly convertible to T
TEST(StatusOr, ConstructionFromTypeConvertibleToT) {
{
CustomType<MyType, kConvToT | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_TRUE(statusor.ok());
}
{
CustomType<MyType, kConvToT> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_TRUE(statusor.ok());
}
}
// Construct absl::StatusOr<T> from U when U has explicit conversion operator to
// absl::StatusOr<T>
TEST(StatusOr, ConstructionFromTypeWithConversionOperatorToStatusOrT) {
{
CustomType<MyType, kConvToStatusOr | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr | kConvToStatus | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType,
kConvToT | kConvToStatusOr | kConvToStatus | kConvExplicit>
v;
absl::StatusOr<MyType> statusor(v);
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
}
TEST(StatusOr, ConstructionFromTypeConvertibleToStatus) {
// Construction fails because conversion to `Status` is explicit.
{
CustomType<MyType, kConvToStatus | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToT | kConvToStatus | kConvExplicit> v;
absl::StatusOr<MyType> statusor(v);
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToT | kConvToStatus> v;
absl::StatusOr<MyType> statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
}
TEST(StatusOr, AssignmentFromT) {
// Assign to absl::StatusOr<T> from T when T is convertible to
// absl::StatusOr<T>
{
ConvertibleToAnyStatusOr v;
absl::StatusOr<ConvertibleToAnyStatusOr> statusor;
statusor = v;
EXPECT_TRUE(statusor.ok());
}
// Assign to absl::StatusOr<T> from T when T is convertible to Status
{
CustomType<MyType, kConvToStatus> v;
absl::StatusOr<CustomType<MyType, kConvToStatus>> statusor;
statusor = v;
EXPECT_TRUE(statusor.ok());
}
}
TEST(StatusOr, AssignmentFromTypeConvertibleToT) {
// Assign to absl::StatusOr<T> from U when U is convertible to T
{
CustomType<MyType, kConvToT> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_TRUE(statusor.ok());
}
}
TEST(StatusOr, AssignmentFromTypeWithConversionOperatortoStatusOrT) {
// Assign to absl::StatusOr<T> from U when U has conversion operator to
// absl::StatusOr<T>
{
CustomType<MyType, kConvToStatusOr> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
{
CustomType<MyType, kConvToT | kConvToStatusOr | kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_EQ(statusor, v.operator absl::StatusOr<MyType>());
}
}
TEST(StatusOr, AssignmentFromTypeConvertibleToStatus) {
// Assign to absl::StatusOr<T> from U when U is convertible to Status
{
CustomType<MyType, kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
{
CustomType<MyType, kConvToT | kConvToStatus> v;
absl::StatusOr<MyType> statusor;
statusor = v;
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status(), static_cast<absl::Status>(v));
}
}
} // namespace