Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

200 lines
6.2 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/exponential_biased.h"
#include <stddef.h>
#include <cmath>
#include <cstdint>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
using ::testing::Ge;
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
MATCHER_P2(IsBetween, a, b,
absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
" and ", b)) {
return a <= arg && arg <= b;
}
// Tests of the quality of the random numbers generated
// This uses the Anderson Darling test for uniformity.
// See "Evaluating the Anderson-Darling Distribution" by Marsaglia
// for details.
// Short cut version of ADinf(z), z>0 (from Marsaglia)
// This returns the p-value for Anderson Darling statistic in
// the limit as n-> infinity. For finite n, apply the error fix below.
double AndersonDarlingInf(double z) {
if (z < 2) {
return exp(-1.2337141 / z) / sqrt(z) *
(2.00012 +
(0.247105 -
(0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
z) *
z);
}
return exp(
-exp(1.0776 -
(2.30695 -
(0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
z));
}
// Corrects the approximation error in AndersonDarlingInf for small values of n
// Add this to AndersonDarlingInf to get a better approximation
// (from Marsaglia)
double AndersonDarlingErrFix(int n, double x) {
if (x > 0.8) {
return (-130.2137 +
(745.2337 -
(1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
x) /
n;
}
double cutoff = 0.01265 + 0.1757 / n;
if (x < cutoff) {
double t = x / cutoff;
t = sqrt(t) * (1 - t) * (49 * t - 102);
return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
} else {
double t = (x - cutoff) / (0.8 - cutoff);
t = -0.00022633 +
(6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
t;
return t * (0.04213 + 0.01365 / n) / n;
}
}
// Returns the AndersonDarling p-value given n and the value of the statistic
double AndersonDarlingPValue(int n, double z) {
double ad = AndersonDarlingInf(z);
double errfix = AndersonDarlingErrFix(n, ad);
return ad + errfix;
}
double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
int n = random_sample.size();
double ad_sum = 0;
for (int i = 0; i < n; i++) {
ad_sum += (2 * i + 1) *
std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
}
double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum;
return ad_statistic;
}
// Tests if the array of doubles is uniformly distributed.
// Returns the p-value of the Anderson Darling Statistic
// for the given set of sorted random doubles
// See "Evaluating the Anderson-Darling Distribution" by
// Marsaglia and Marsaglia for details.
double AndersonDarlingTest(const std::vector<double>& random_sample) {
double ad_statistic = AndersonDarlingStatistic(random_sample);
double p = AndersonDarlingPValue(random_sample.size(), ad_statistic);
return p;
}
TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) {
ExponentialBiased eb;
for (int runs = 0; runs < 10; ++runs) {
for (int flips = eb.GetSkipCount(1); flips > 0; --flips) {
printf("head...");
}
printf("tail\n");
}
int heads = 0;
for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) {
++heads;
}
printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000);
}
TEST(ExponentialBiasedTest, SampleDemoWithStride) {
ExponentialBiased eb;
int stride = eb.GetStride(10);
int samples = 0;
for (int i = 0; i < 10000000; ++i) {
if (--stride == 0) {
++samples;
stride = eb.GetStride(10);
}
}
printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000);
}
// Testing that NextRandom generates uniform random numbers. Applies the
// Anderson-Darling test for uniformity
TEST(ExponentialBiasedTest, TestNextRandom) {
for (auto n : std::vector<int>({
10, // Check short-range correlation
100, 1000,
10000 // Make sure there's no systemic error
})) {
uint64_t x = 1;
// This assumes that the prng returns 48 bit numbers
uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
// Initialize.
for (int i = 1; i <= 20; i++) {
x = ExponentialBiased::NextRandom(x);
}
std::vector<uint64_t> int_random_sample(n);
// Collect samples
for (int i = 0; i < n; i++) {
int_random_sample[i] = x;
x = ExponentialBiased::NextRandom(x);
}
// First sort them...
std::sort(int_random_sample.begin(), int_random_sample.end());
std::vector<double> random_sample(n);
// Convert them to uniform randoms (in the range [0,1])
for (int i = 0; i < n; i++) {
random_sample[i] =
static_cast<double>(int_random_sample[i]) / max_prng_value;
}
// Now compute the Anderson-Darling statistic
double ad_pvalue = AndersonDarlingTest(random_sample);
EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
<< "prng is not uniform: n = " << n << " p = " << ad_pvalue;
}
}
// The generator needs to be available as a thread_local and as a static
// variable.
TEST(ExponentialBiasedTest, InitializationModes) {
ABSL_CONST_INIT static ExponentialBiased eb_static;
EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0));
#if ABSL_HAVE_THREAD_LOCAL
thread_local ExponentialBiased eb_thread;
EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0));
#endif
ExponentialBiased eb_stack;
EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0));
}
} // namespace base_internal
ABSL_NAMESPACE_END
} // namespace absl