Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

665 lines
22 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/escaping.h"
#include <array>
#include <cstdio>
#include <cstring>
#include <memory>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/fixed_array.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/internal/escaping_test_common.h"
namespace {
struct epair {
std::string escaped;
std::string unescaped;
};
TEST(CEscape, EscapeAndUnescape) {
const std::string inputs[] = {
std::string("foo\nxx\r\b\0023"),
std::string(""),
std::string("abc"),
std::string("\1chad_rules"),
std::string("\1arnar_drools"),
std::string("xxxx\r\t'\"\\"),
std::string("\0xx\0", 4),
std::string("\x01\x31"),
std::string("abc\xb\x42\141bc"),
std::string("123\1\x31\x32\x33"),
std::string("\xc1\xca\x1b\x62\x19o\xcc\x04"),
std::string(
"\\\"\xe8\xb0\xb7\xe6\xad\x8c\\\" is Google\\\'s Chinese name"),
};
// Do this twice, once for octal escapes and once for hex escapes.
for (int kind = 0; kind < 4; kind++) {
for (const std::string& original : inputs) {
std::string escaped;
switch (kind) {
case 0:
escaped = absl::CEscape(original);
break;
case 1:
escaped = absl::CHexEscape(original);
break;
case 2:
escaped = absl::Utf8SafeCEscape(original);
break;
case 3:
escaped = absl::Utf8SafeCHexEscape(original);
break;
}
std::string unescaped_str;
EXPECT_TRUE(absl::CUnescape(escaped, &unescaped_str));
EXPECT_EQ(unescaped_str, original);
unescaped_str.erase();
std::string error;
EXPECT_TRUE(absl::CUnescape(escaped, &unescaped_str, &error));
EXPECT_EQ(error, "");
// Check in-place unescaping
std::string s = escaped;
EXPECT_TRUE(absl::CUnescape(s, &s));
ASSERT_EQ(s, original);
}
}
// Check that all possible two character strings can be escaped then
// unescaped successfully.
for (int char0 = 0; char0 < 256; char0++) {
for (int char1 = 0; char1 < 256; char1++) {
char chars[2];
chars[0] = char0;
chars[1] = char1;
std::string s(chars, 2);
std::string escaped = absl::CHexEscape(s);
std::string unescaped;
EXPECT_TRUE(absl::CUnescape(escaped, &unescaped));
EXPECT_EQ(s, unescaped);
}
}
}
TEST(CEscape, BasicEscaping) {
epair oct_values[] = {
{"foo\\rbar\\nbaz\\t", "foo\rbar\nbaz\t"},
{"\\'full of \\\"sound\\\" and \\\"fury\\\"\\'",
"'full of \"sound\" and \"fury\"'"},
{"signi\\\\fying\\\\ nothing\\\\", "signi\\fying\\ nothing\\"},
{"\\010\\t\\n\\013\\014\\r", "\010\011\012\013\014\015"}
};
epair hex_values[] = {
{"ubik\\rubik\\nubik\\t", "ubik\rubik\nubik\t"},
{"I\\\'ve just seen a \\\"face\\\"",
"I've just seen a \"face\""},
{"hel\\\\ter\\\\skel\\\\ter\\\\", "hel\\ter\\skel\\ter\\"},
{"\\x08\\t\\n\\x0b\\x0c\\r", "\010\011\012\013\014\015"}
};
epair utf8_oct_values[] = {
{"\xe8\xb0\xb7\xe6\xad\x8c\\r\xe8\xb0\xb7\xe6\xad\x8c\\nbaz\\t",
"\xe8\xb0\xb7\xe6\xad\x8c\r\xe8\xb0\xb7\xe6\xad\x8c\nbaz\t"},
{"\\\"\xe8\xb0\xb7\xe6\xad\x8c\\\" is Google\\\'s Chinese name",
"\"\xe8\xb0\xb7\xe6\xad\x8c\" is Google\'s Chinese name"},
{"\xe3\x83\xa1\xe3\x83\xbc\xe3\x83\xab\\\\are\\\\Japanese\\\\chars\\\\",
"\xe3\x83\xa1\xe3\x83\xbc\xe3\x83\xab\\are\\Japanese\\chars\\"},
{"\xed\x81\xac\xeb\xa1\xac\\010\\t\\n\\013\\014\\r",
"\xed\x81\xac\xeb\xa1\xac\010\011\012\013\014\015"}
};
epair utf8_hex_values[] = {
{"\x20\xe4\xbd\xa0\\t\xe5\xa5\xbd,\\r!\\n",
"\x20\xe4\xbd\xa0\t\xe5\xa5\xbd,\r!\n"},
{"\xe8\xa9\xa6\xe9\xa8\x93\\\' means \\\"test\\\"",
"\xe8\xa9\xa6\xe9\xa8\x93\' means \"test\""},
{"\\\\\xe6\x88\x91\\\\:\\\\\xe6\x9d\xa8\xe6\xac\xa2\\\\",
"\\\xe6\x88\x91\\:\\\xe6\x9d\xa8\xe6\xac\xa2\\"},
{"\xed\x81\xac\xeb\xa1\xac\\x08\\t\\n\\x0b\\x0c\\r",
"\xed\x81\xac\xeb\xa1\xac\010\011\012\013\014\015"}
};
for (const epair& val : oct_values) {
std::string escaped = absl::CEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
for (const epair& val : hex_values) {
std::string escaped = absl::CHexEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
for (const epair& val : utf8_oct_values) {
std::string escaped = absl::Utf8SafeCEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
for (const epair& val : utf8_hex_values) {
std::string escaped = absl::Utf8SafeCHexEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
}
TEST(Unescape, BasicFunction) {
epair tests[] =
{{"", ""},
{"\\u0030", "0"},
{"\\u00A3", "\xC2\xA3"},
{"\\u22FD", "\xE2\x8B\xBD"},
{"\\U00010000", "\xF0\x90\x80\x80"},
{"\\U0010FFFD", "\xF4\x8F\xBF\xBD"}};
for (const epair& val : tests) {
std::string out;
EXPECT_TRUE(absl::CUnescape(val.escaped, &out));
EXPECT_EQ(out, val.unescaped);
}
std::string bad[] = {"\\u1", // too short
"\\U1", // too short
"\\Uffffff", // exceeds 0x10ffff (largest Unicode)
"\\U00110000", // exceeds 0x10ffff (largest Unicode)
"\\uD835", // surrogate character (D800-DFFF)
"\\U0000DD04", // surrogate character (D800-DFFF)
"\\777", // exceeds 0xff
"\\xABCD"}; // exceeds 0xff
for (const std::string& e : bad) {
std::string error;
std::string out;
EXPECT_FALSE(absl::CUnescape(e, &out, &error));
EXPECT_FALSE(error.empty());
out.erase();
EXPECT_FALSE(absl::CUnescape(e, &out));
}
}
class CUnescapeTest : public testing::Test {
protected:
static const char kStringWithMultipleOctalNulls[];
static const char kStringWithMultipleHexNulls[];
static const char kStringWithMultipleUnicodeNulls[];
std::string result_string_;
};
const char CUnescapeTest::kStringWithMultipleOctalNulls[] =
"\\0\\n" // null escape \0 plus newline
"0\\n" // just a number 0 (not a null escape) plus newline
"\\00\\12" // null escape \00 plus octal newline code
"\\000"; // null escape \000
// This has the same ingredients as kStringWithMultipleOctalNulls
// but with \x hex escapes instead of octal escapes.
const char CUnescapeTest::kStringWithMultipleHexNulls[] =
"\\x0\\n"
"0\\n"
"\\x00\\xa"
"\\x000";
const char CUnescapeTest::kStringWithMultipleUnicodeNulls[] =
"\\u0000\\n" // short-form (4-digit) null escape plus newline
"0\\n" // just a number 0 (not a null escape) plus newline
"\\U00000000"; // long-form (8-digit) null escape
TEST_F(CUnescapeTest, Unescapes1CharOctalNull) {
std::string original_string = "\\0";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes2CharOctalNull) {
std::string original_string = "\\00";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes3CharOctalNull) {
std::string original_string = "\\000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes1CharHexNull) {
std::string original_string = "\\x0";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes2CharHexNull) {
std::string original_string = "\\x00";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes3CharHexNull) {
std::string original_string = "\\x000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes4CharUnicodeNull) {
std::string original_string = "\\u0000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes8CharUnicodeNull) {
std::string original_string = "\\U00000000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, UnescapesMultipleOctalNulls) {
std::string original_string(kStringWithMultipleOctalNulls);
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
// All escapes, including newlines and null escapes, should have been
// converted to the equivalent characters.
EXPECT_EQ(std::string("\0\n"
"0\n"
"\0\n"
"\0",
7),
result_string_);
}
TEST_F(CUnescapeTest, UnescapesMultipleHexNulls) {
std::string original_string(kStringWithMultipleHexNulls);
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0\n"
"0\n"
"\0\n"
"\0",
7),
result_string_);
}
TEST_F(CUnescapeTest, UnescapesMultipleUnicodeNulls) {
std::string original_string(kStringWithMultipleUnicodeNulls);
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0\n"
"0\n"
"\0",
5),
result_string_);
}
static struct {
absl::string_view plaintext;
absl::string_view cyphertext;
} const base64_tests[] = {
// Empty string.
{{"", 0}, {"", 0}},
{{nullptr, 0},
{"", 0}}, // if length is zero, plaintext ptr must be ignored!
// Basic bit patterns;
// values obtained with "echo -n '...' | uuencode -m test"
{{"\000", 1}, "AA=="},
{{"\001", 1}, "AQ=="},
{{"\002", 1}, "Ag=="},
{{"\004", 1}, "BA=="},
{{"\010", 1}, "CA=="},
{{"\020", 1}, "EA=="},
{{"\040", 1}, "IA=="},
{{"\100", 1}, "QA=="},
{{"\200", 1}, "gA=="},
{{"\377", 1}, "/w=="},
{{"\376", 1}, "/g=="},
{{"\375", 1}, "/Q=="},
{{"\373", 1}, "+w=="},
{{"\367", 1}, "9w=="},
{{"\357", 1}, "7w=="},
{{"\337", 1}, "3w=="},
{{"\277", 1}, "vw=="},
{{"\177", 1}, "fw=="},
{{"\000\000", 2}, "AAA="},
{{"\000\001", 2}, "AAE="},
{{"\000\002", 2}, "AAI="},
{{"\000\004", 2}, "AAQ="},
{{"\000\010", 2}, "AAg="},
{{"\000\020", 2}, "ABA="},
{{"\000\040", 2}, "ACA="},
{{"\000\100", 2}, "AEA="},
{{"\000\200", 2}, "AIA="},
{{"\001\000", 2}, "AQA="},
{{"\002\000", 2}, "AgA="},
{{"\004\000", 2}, "BAA="},
{{"\010\000", 2}, "CAA="},
{{"\020\000", 2}, "EAA="},
{{"\040\000", 2}, "IAA="},
{{"\100\000", 2}, "QAA="},
{{"\200\000", 2}, "gAA="},
{{"\377\377", 2}, "//8="},
{{"\377\376", 2}, "//4="},
{{"\377\375", 2}, "//0="},
{{"\377\373", 2}, "//s="},
{{"\377\367", 2}, "//c="},
{{"\377\357", 2}, "/+8="},
{{"\377\337", 2}, "/98="},
{{"\377\277", 2}, "/78="},
{{"\377\177", 2}, "/38="},
{{"\376\377", 2}, "/v8="},
{{"\375\377", 2}, "/f8="},
{{"\373\377", 2}, "+/8="},
{{"\367\377", 2}, "9/8="},
{{"\357\377", 2}, "7/8="},
{{"\337\377", 2}, "3/8="},
{{"\277\377", 2}, "v/8="},
{{"\177\377", 2}, "f/8="},
{{"\000\000\000", 3}, "AAAA"},
{{"\000\000\001", 3}, "AAAB"},
{{"\000\000\002", 3}, "AAAC"},
{{"\000\000\004", 3}, "AAAE"},
{{"\000\000\010", 3}, "AAAI"},
{{"\000\000\020", 3}, "AAAQ"},
{{"\000\000\040", 3}, "AAAg"},
{{"\000\000\100", 3}, "AABA"},
{{"\000\000\200", 3}, "AACA"},
{{"\000\001\000", 3}, "AAEA"},
{{"\000\002\000", 3}, "AAIA"},
{{"\000\004\000", 3}, "AAQA"},
{{"\000\010\000", 3}, "AAgA"},
{{"\000\020\000", 3}, "ABAA"},
{{"\000\040\000", 3}, "ACAA"},
{{"\000\100\000", 3}, "AEAA"},
{{"\000\200\000", 3}, "AIAA"},
{{"\001\000\000", 3}, "AQAA"},
{{"\002\000\000", 3}, "AgAA"},
{{"\004\000\000", 3}, "BAAA"},
{{"\010\000\000", 3}, "CAAA"},
{{"\020\000\000", 3}, "EAAA"},
{{"\040\000\000", 3}, "IAAA"},
{{"\100\000\000", 3}, "QAAA"},
{{"\200\000\000", 3}, "gAAA"},
{{"\377\377\377", 3}, "////"},
{{"\377\377\376", 3}, "///+"},
{{"\377\377\375", 3}, "///9"},
{{"\377\377\373", 3}, "///7"},
{{"\377\377\367", 3}, "///3"},
{{"\377\377\357", 3}, "///v"},
{{"\377\377\337", 3}, "///f"},
{{"\377\377\277", 3}, "//+/"},
{{"\377\377\177", 3}, "//9/"},
{{"\377\376\377", 3}, "//7/"},
{{"\377\375\377", 3}, "//3/"},
{{"\377\373\377", 3}, "//v/"},
{{"\377\367\377", 3}, "//f/"},
{{"\377\357\377", 3}, "/+//"},
{{"\377\337\377", 3}, "/9//"},
{{"\377\277\377", 3}, "/7//"},
{{"\377\177\377", 3}, "/3//"},
{{"\376\377\377", 3}, "/v//"},
{{"\375\377\377", 3}, "/f//"},
{{"\373\377\377", 3}, "+///"},
{{"\367\377\377", 3}, "9///"},
{{"\357\377\377", 3}, "7///"},
{{"\337\377\377", 3}, "3///"},
{{"\277\377\377", 3}, "v///"},
{{"\177\377\377", 3}, "f///"},
// Random numbers: values obtained with
//
// #! /bin/bash
// dd bs=$1 count=1 if=/dev/random of=/tmp/bar.random
// od -N $1 -t o1 /tmp/bar.random
// uuencode -m test < /tmp/bar.random
//
// where $1 is the number of bytes (2, 3)
{{"\243\361", 2}, "o/E="},
{{"\024\167", 2}, "FHc="},
{{"\313\252", 2}, "y6o="},
{{"\046\041", 2}, "JiE="},
{{"\145\236", 2}, "ZZ4="},
{{"\254\325", 2}, "rNU="},
{{"\061\330", 2}, "Mdg="},
{{"\245\032", 2}, "pRo="},
{{"\006\000", 2}, "BgA="},
{{"\375\131", 2}, "/Vk="},
{{"\303\210", 2}, "w4g="},
{{"\040\037", 2}, "IB8="},
{{"\261\372", 2}, "sfo="},
{{"\335\014", 2}, "3Qw="},
{{"\233\217", 2}, "m48="},
{{"\373\056", 2}, "+y4="},
{{"\247\232", 2}, "p5o="},
{{"\107\053", 2}, "Rys="},
{{"\204\077", 2}, "hD8="},
{{"\276\211", 2}, "vok="},
{{"\313\110", 2}, "y0g="},
{{"\363\376", 2}, "8/4="},
{{"\251\234", 2}, "qZw="},
{{"\103\262", 2}, "Q7I="},
{{"\142\312", 2}, "Yso="},
{{"\067\211", 2}, "N4k="},
{{"\220\001", 2}, "kAE="},
{{"\152\240", 2}, "aqA="},
{{"\367\061", 2}, "9zE="},
{{"\133\255", 2}, "W60="},
{{"\176\035", 2}, "fh0="},
{{"\032\231", 2}, "Gpk="},
{{"\013\007\144", 3}, "Cwdk"},
{{"\030\112\106", 3}, "GEpG"},
{{"\047\325\046", 3}, "J9Um"},
{{"\310\160\022", 3}, "yHAS"},
{{"\131\100\237", 3}, "WUCf"},
{{"\064\342\134", 3}, "NOJc"},
{{"\010\177\004", 3}, "CH8E"},
{{"\345\147\205", 3}, "5WeF"},
{{"\300\343\360", 3}, "wOPw"},
{{"\061\240\201", 3}, "MaCB"},
{{"\225\333\044", 3}, "ldsk"},
{{"\215\137\352", 3}, "jV/q"},
{{"\371\147\160", 3}, "+Wdw"},
{{"\030\320\051", 3}, "GNAp"},
{{"\044\174\241", 3}, "JHyh"},
{{"\260\127\037", 3}, "sFcf"},
{{"\111\045\033", 3}, "SSUb"},
{{"\202\114\107", 3}, "gkxH"},
{{"\057\371\042", 3}, "L/ki"},
{{"\223\247\244", 3}, "k6ek"},
{{"\047\216\144", 3}, "J45k"},
{{"\203\070\327", 3}, "gzjX"},
{{"\247\140\072", 3}, "p2A6"},
{{"\124\115\116", 3}, "VE1O"},
{{"\157\162\050", 3}, "b3Io"},
{{"\357\223\004", 3}, "75ME"},
{{"\052\117\156", 3}, "Kk9u"},
{{"\347\154\000", 3}, "52wA"},
{{"\303\012\142", 3}, "wwpi"},
{{"\060\035\362", 3}, "MB3y"},
{{"\130\226\361", 3}, "WJbx"},
{{"\173\013\071", 3}, "ews5"},
{{"\336\004\027", 3}, "3gQX"},
{{"\357\366\234", 3}, "7/ac"},
{{"\353\304\111", 3}, "68RJ"},
{{"\024\264\131", 3}, "FLRZ"},
{{"\075\114\251", 3}, "PUyp"},
{{"\315\031\225", 3}, "zRmV"},
{{"\154\201\276", 3}, "bIG+"},
{{"\200\066\072", 3}, "gDY6"},
{{"\142\350\267", 3}, "Yui3"},
{{"\033\000\166", 3}, "GwB2"},
{{"\210\055\077", 3}, "iC0/"},
{{"\341\037\124", 3}, "4R9U"},
{{"\161\103\152", 3}, "cUNq"},
{{"\270\142\131", 3}, "uGJZ"},
{{"\337\076\074", 3}, "3z48"},
{{"\375\106\362", 3}, "/Uby"},
{{"\227\301\127", 3}, "l8FX"},
{{"\340\002\234", 3}, "4AKc"},
{{"\121\064\033", 3}, "UTQb"},
{{"\157\134\143", 3}, "b1xj"},
{{"\247\055\327", 3}, "py3X"},
{{"\340\142\005", 3}, "4GIF"},
{{"\060\260\143", 3}, "MLBj"},
{{"\075\203\170", 3}, "PYN4"},
{{"\143\160\016", 3}, "Y3AO"},
{{"\313\013\063", 3}, "ywsz"},
{{"\174\236\135", 3}, "fJ5d"},
{{"\103\047\026", 3}, "QycW"},
{{"\365\005\343", 3}, "9QXj"},
{{"\271\160\223", 3}, "uXCT"},
{{"\362\255\172", 3}, "8q16"},
{{"\113\012\015", 3}, "SwoN"},
// various lengths, generated by this python script:
//
// from std::string import lowercase as lc
// for i in range(27):
// print '{ %2d, "%s",%s "%s" },' % (i, lc[:i], ' ' * (26-i),
// lc[:i].encode('base64').strip())
{{"", 0}, {"", 0}},
{"a", "YQ=="},
{"ab", "YWI="},
{"abc", "YWJj"},
{"abcd", "YWJjZA=="},
{"abcde", "YWJjZGU="},
{"abcdef", "YWJjZGVm"},
{"abcdefg", "YWJjZGVmZw=="},
{"abcdefgh", "YWJjZGVmZ2g="},
{"abcdefghi", "YWJjZGVmZ2hp"},
{"abcdefghij", "YWJjZGVmZ2hpag=="},
{"abcdefghijk", "YWJjZGVmZ2hpams="},
{"abcdefghijkl", "YWJjZGVmZ2hpamts"},
{"abcdefghijklm", "YWJjZGVmZ2hpamtsbQ=="},
{"abcdefghijklmn", "YWJjZGVmZ2hpamtsbW4="},
{"abcdefghijklmno", "YWJjZGVmZ2hpamtsbW5v"},
{"abcdefghijklmnop", "YWJjZGVmZ2hpamtsbW5vcA=="},
{"abcdefghijklmnopq", "YWJjZGVmZ2hpamtsbW5vcHE="},
{"abcdefghijklmnopqr", "YWJjZGVmZ2hpamtsbW5vcHFy"},
{"abcdefghijklmnopqrs", "YWJjZGVmZ2hpamtsbW5vcHFycw=="},
{"abcdefghijklmnopqrst", "YWJjZGVmZ2hpamtsbW5vcHFyc3Q="},
{"abcdefghijklmnopqrstu", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1"},
{"abcdefghijklmnopqrstuv", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dg=="},
{"abcdefghijklmnopqrstuvw", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnc="},
{"abcdefghijklmnopqrstuvwx", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4"},
{"abcdefghijklmnopqrstuvwxy", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eQ=="},
{"abcdefghijklmnopqrstuvwxyz", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXo="},
};
template <typename StringType>
void TestEscapeAndUnescape() {
// Check the short strings; this tests the math (and boundaries)
for (const auto& tc : base64_tests) {
StringType encoded("this junk should be ignored");
absl::Base64Escape(tc.plaintext, &encoded);
EXPECT_EQ(encoded, tc.cyphertext);
EXPECT_EQ(absl::Base64Escape(tc.plaintext), tc.cyphertext);
StringType decoded("this junk should be ignored");
EXPECT_TRUE(absl::Base64Unescape(encoded, &decoded));
EXPECT_EQ(decoded, tc.plaintext);
StringType websafe(tc.cyphertext);
for (int c = 0; c < websafe.size(); ++c) {
if ('+' == websafe[c]) websafe[c] = '-';
if ('/' == websafe[c]) websafe[c] = '_';
if ('=' == websafe[c]) {
websafe.resize(c);
break;
}
}
encoded = "this junk should be ignored";
absl::WebSafeBase64Escape(tc.plaintext, &encoded);
EXPECT_EQ(encoded, websafe);
EXPECT_EQ(absl::WebSafeBase64Escape(tc.plaintext), websafe);
// Let's try the string version of the decoder
decoded = "this junk should be ignored";
EXPECT_TRUE(absl::WebSafeBase64Unescape(websafe, &decoded));
EXPECT_EQ(decoded, tc.plaintext);
}
// Now try the long strings, this tests the streaming
for (const auto& tc : absl::strings_internal::base64_strings()) {
StringType buffer;
absl::WebSafeBase64Escape(tc.plaintext, &buffer);
EXPECT_EQ(tc.cyphertext, buffer);
EXPECT_EQ(absl::WebSafeBase64Escape(tc.plaintext), tc.cyphertext);
}
// Verify the behavior when decoding bad data
{
absl::string_view data_set[] = {"ab-/", absl::string_view("\0bcd", 4),
absl::string_view("abc.\0", 5)};
for (absl::string_view bad_data : data_set) {
StringType buf;
EXPECT_FALSE(absl::Base64Unescape(bad_data, &buf));
EXPECT_FALSE(absl::WebSafeBase64Unescape(bad_data, &buf));
EXPECT_TRUE(buf.empty());
}
}
}
TEST(Base64, EscapeAndUnescape) {
TestEscapeAndUnescape<std::string>();
}
TEST(Base64, DISABLED_HugeData) {
const size_t kSize = size_t(3) * 1000 * 1000 * 1000;
static_assert(kSize % 3 == 0, "kSize must be divisible by 3");
const std::string huge(kSize, 'x');
std::string escaped;
absl::Base64Escape(huge, &escaped);
// Generates the string that should match a base64 encoded "xxx..." string.
// "xxx" in base64 is "eHh4".
std::string expected_encoding;
expected_encoding.reserve(kSize / 3 * 4);
for (size_t i = 0; i < kSize / 3; ++i) {
expected_encoding.append("eHh4");
}
EXPECT_EQ(expected_encoding, escaped);
std::string unescaped;
EXPECT_TRUE(absl::Base64Unescape(escaped, &unescaped));
EXPECT_EQ(huge, unescaped);
}
TEST(HexAndBack, HexStringToBytes_and_BytesToHexString) {
std::string hex_mixed = "0123456789abcdefABCDEF";
std::string bytes_expected = "\x01\x23\x45\x67\x89\xab\xcd\xef\xAB\xCD\xEF";
std::string hex_only_lower = "0123456789abcdefabcdef";
std::string bytes_result = absl::HexStringToBytes(hex_mixed);
EXPECT_EQ(bytes_expected, bytes_result);
std::string prefix_valid = hex_mixed + "?";
std::string prefix_valid_result = absl::HexStringToBytes(
absl::string_view(prefix_valid.data(), prefix_valid.size() - 1));
EXPECT_EQ(bytes_expected, prefix_valid_result);
std::string infix_valid = "?" + hex_mixed + "???";
std::string infix_valid_result = absl::HexStringToBytes(
absl::string_view(infix_valid.data() + 1, hex_mixed.size()));
EXPECT_EQ(bytes_expected, infix_valid_result);
std::string hex_result = absl::BytesToHexString(bytes_expected);
EXPECT_EQ(hex_only_lower, hex_result);
}
} // namespace