Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

160 lines
6.1 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: algorithm.h
// -----------------------------------------------------------------------------
//
// This header file contains Google extensions to the standard <algorithm> C++
// header.
#ifndef ABSL_ALGORITHM_ALGORITHM_H_
#define ABSL_ALGORITHM_ALGORITHM_H_
#include <algorithm>
#include <iterator>
#include <type_traits>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace algorithm_internal {
// Performs comparisons with operator==, similar to C++14's `std::equal_to<>`.
struct EqualTo {
template <typename T, typename U>
bool operator()(const T& a, const U& b) const {
return a == b;
}
};
template <typename InputIter1, typename InputIter2, typename Pred>
bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
InputIter2 last2, Pred pred, std::input_iterator_tag,
std::input_iterator_tag) {
while (true) {
if (first1 == last1) return first2 == last2;
if (first2 == last2) return false;
if (!pred(*first1, *first2)) return false;
++first1;
++first2;
}
}
template <typename InputIter1, typename InputIter2, typename Pred>
bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
InputIter2 last2, Pred&& pred, std::random_access_iterator_tag,
std::random_access_iterator_tag) {
return (last1 - first1 == last2 - first2) &&
std::equal(first1, last1, first2, std::forward<Pred>(pred));
}
// When we are using our own internal predicate that just applies operator==, we
// forward to the non-predicate form of std::equal. This enables an optimization
// in libstdc++ that can result in std::memcmp being used for integer types.
template <typename InputIter1, typename InputIter2>
bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
InputIter2 last2, algorithm_internal::EqualTo /* unused */,
std::random_access_iterator_tag,
std::random_access_iterator_tag) {
return (last1 - first1 == last2 - first2) &&
std::equal(first1, last1, first2);
}
template <typename It>
It RotateImpl(It first, It middle, It last, std::true_type) {
return std::rotate(first, middle, last);
}
template <typename It>
It RotateImpl(It first, It middle, It last, std::false_type) {
std::rotate(first, middle, last);
return std::next(first, std::distance(middle, last));
}
} // namespace algorithm_internal
// equal()
//
// Compares the equality of two ranges specified by pairs of iterators, using
// the given predicate, returning true iff for each corresponding iterator i1
// and i2 in the first and second range respectively, pred(*i1, *i2) == true
//
// This comparison takes at most min(`last1` - `first1`, `last2` - `first2`)
// invocations of the predicate. Additionally, if InputIter1 and InputIter2 are
// both random-access iterators, and `last1` - `first1` != `last2` - `first2`,
// then the predicate is never invoked and the function returns false.
//
// This is a C++11-compatible implementation of C++14 `std::equal`. See
// https://en.cppreference.com/w/cpp/algorithm/equal for more information.
template <typename InputIter1, typename InputIter2, typename Pred>
bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2,
InputIter2 last2, Pred&& pred) {
return algorithm_internal::EqualImpl(
first1, last1, first2, last2, std::forward<Pred>(pred),
typename std::iterator_traits<InputIter1>::iterator_category{},
typename std::iterator_traits<InputIter2>::iterator_category{});
}
// Overload of equal() that performs comparison of two ranges specified by pairs
// of iterators using operator==.
template <typename InputIter1, typename InputIter2>
bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2,
InputIter2 last2) {
return absl::equal(first1, last1, first2, last2,
algorithm_internal::EqualTo{});
}
// linear_search()
//
// Performs a linear search for `value` using the iterator `first` up to
// but not including `last`, returning true if [`first`, `last`) contains an
// element equal to `value`.
//
// A linear search is of O(n) complexity which is guaranteed to make at most
// n = (`last` - `first`) comparisons. A linear search over short containers
// may be faster than a binary search, even when the container is sorted.
template <typename InputIterator, typename EqualityComparable>
bool linear_search(InputIterator first, InputIterator last,
const EqualityComparable& value) {
return std::find(first, last, value) != last;
}
// rotate()
//
// Performs a left rotation on a range of elements (`first`, `last`) such that
// `middle` is now the first element. `rotate()` returns an iterator pointing to
// the first element before rotation. This function is exactly the same as
// `std::rotate`, but fixes a bug in gcc
// <= 4.9 where `std::rotate` returns `void` instead of an iterator.
//
// The complexity of this algorithm is the same as that of `std::rotate`, but if
// `ForwardIterator` is not a random-access iterator, then `absl::rotate`
// performs an additional pass over the range to construct the return value.
template <typename ForwardIterator>
ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,
ForwardIterator last) {
return algorithm_internal::RotateImpl(
first, middle, last,
std::is_same<decltype(std::rotate(first, middle, last)),
ForwardIterator>());
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_ALGORITHM_ALGORITHM_H_