Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

702 lines
26 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <algorithm>
#include <functional>
#include <map>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
Export of internal Abseil changes -- 5ed5dc9e17c66c298ee31cefc941a46348d8ad34 by Abseil Team <absl-team@google.com>: Fix typo. PiperOrigin-RevId: 362040582 -- ac704b53a49becc42f77e4529d3952f8e7d18ce4 by Abseil Team <absl-team@google.com>: Fix a typo in a comment. PiperOrigin-RevId: 361576641 -- d20ccb27b7e9b53481e9192c1aae5202c06bfcb1 by Derek Mauro <dmauro@google.com>: Remove the inline keyword from functions that aren't defined in the header. This may fix #910. PiperOrigin-RevId: 361551300 -- aed9ae1dffa7b228dcb6ffbeb2fe06a13970c72b by Laramie Leavitt <lar@google.com>: Propagate nice/strict/naggy state on absl::MockingBitGen. Allowing NiceMocks reduces the log spam for un-mocked calls, and it enables nicer setup with ON_CALL, so it is desirable to support it in absl::MockingBitGen. Internally, gmock tracks object "strictness" levels using an internal API; in order to achieve the same results we detect when the MockingBitGen is wrapped in a Nice/Naggy/Strict and wrap the internal implementation MockFunction in the same type. This is achieved by providing overloads to the Call() function, and passing the mock object type down into it's own RegisterMock call, where a compile-time check verifies the state and creates the appropriate mock function. PiperOrigin-RevId: 361233484 -- 96186023fabd13d01d32d60d9c7ac4ead1aeb989 by Abseil Team <absl-team@google.com>: Ensure that trivial types are passed by value rather than reference PiperOrigin-RevId: 361217450 -- e1135944835d27f77e8119b8166d8fb6aa25f906 by Evan Brown <ezb@google.com>: Internal change. PiperOrigin-RevId: 361215882 -- 583fe6c94c1c2ef757ef6e78292a15fbe4030e35 by Evan Brown <ezb@google.com>: Increase the minimum number of slots per node from 3 to 4. We also rename kNodeValues (and related names) to kNodeSlots to make it clear that they are about the number of slots per node rather than the number of values per node - kMinNodeValues keeps the same name because it's actually about the number of values rather than the number of slots. Motivation: I think the expected number of values per node, assuming random insertion order, is the average of the maximum and minimum numbers of values per node (kNodeSlots and kMinNodeValues). For large and/or even kNodeSlots, this is ~75% of kNodeSlots, but for kNodeSlots=3, this is ~67% of kNodeSlots. kMinNodeValues (which corresponds to worst-case occupancy) is ~33% of kNodeSlots, when kNodeSlots=3, compared to 50% for even kNodeSlots. This results in higher memory overhead per value, and since this case (kNodeSlots=3) is used when values are large, it seems worth fixing. PiperOrigin-RevId: 361171495 GitOrigin-RevId: 5ed5dc9e17c66c298ee31cefc941a46348d8ad34 Change-Id: I8e33b5df1f987a77112093821085c410185ab51a
4 years ago
#include "benchmark/benchmark.h"
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
#include "absl/base/internal/raw_logging.h"
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/btree_test.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/internal/hashtable_debug.h"
#include "absl/flags/flag.h"
#include "absl/hash/hash.h"
#include "absl/memory/memory.h"
#include "absl/strings/cord.h"
#include "absl/strings/str_format.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
namespace {
constexpr size_t kBenchmarkValues = 1 << 20;
// How many times we add and remove sub-batches in one batch of *AddRem
// benchmarks.
constexpr size_t kAddRemBatchSize = 1 << 2;
// Generates n values in the range [0, 4 * n].
template <typename V>
std::vector<V> GenerateValues(int n) {
constexpr int kSeed = 23;
return GenerateValuesWithSeed<V>(n, 4 * n, kSeed);
}
// Benchmark insertion of values into a container.
template <typename T>
void BM_InsertImpl(benchmark::State& state, bool sorted) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
if (sorted) {
std::sort(values.begin(), values.end());
}
T container(values.begin(), values.end());
// Remove and re-insert 10% of the keys per batch.
const int batch_size = (kBenchmarkValues + 9) / 10;
while (state.KeepRunningBatch(batch_size)) {
state.PauseTiming();
const auto i = static_cast<int>(state.iterations());
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.erase(key_of_value(values[x]));
}
state.ResumeTiming();
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.insert(values[x]);
}
}
}
template <typename T>
void BM_Insert(benchmark::State& state) {
BM_InsertImpl<T>(state, false);
}
template <typename T>
void BM_InsertSorted(benchmark::State& state) {
BM_InsertImpl<T>(state, true);
}
// Benchmark inserting the first few elements in a container. In b-tree, this is
// when the root node grows.
template <typename T>
void BM_InsertSmall(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
const int kSize = 8;
std::vector<V> values = GenerateValues<V>(kSize);
T container;
while (state.KeepRunningBatch(kSize)) {
for (int i = 0; i < kSize; ++i) {
benchmark::DoNotOptimize(container.insert(values[i]));
}
state.PauseTiming();
// Do not measure the time it takes to clear the container.
container.clear();
state.ResumeTiming();
}
}
template <typename T>
void BM_LookupImpl(benchmark::State& state, bool sorted) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
if (sorted) {
std::sort(values.begin(), values.end());
}
T container(values.begin(), values.end());
while (state.KeepRunning()) {
int idx = state.iterations() % kBenchmarkValues;
benchmark::DoNotOptimize(container.find(key_of_value(values[idx])));
}
}
// Benchmark lookup of values in a container.
template <typename T>
void BM_Lookup(benchmark::State& state) {
BM_LookupImpl<T>(state, false);
}
// Benchmark lookup of values in a full container, meaning that values
// are inserted in-order to take advantage of biased insertion, which
// yields a full tree.
template <typename T>
void BM_FullLookup(benchmark::State& state) {
BM_LookupImpl<T>(state, true);
}
// Benchmark deletion of values from a container.
template <typename T>
void BM_Delete(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
T container(values.begin(), values.end());
// Remove and re-insert 10% of the keys per batch.
const int batch_size = (kBenchmarkValues + 9) / 10;
while (state.KeepRunningBatch(batch_size)) {
const int i = state.iterations();
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.erase(key_of_value(values[x]));
}
state.PauseTiming();
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.insert(values[x]);
}
state.ResumeTiming();
}
}
// Benchmark deletion of multiple values from a container.
template <typename T>
void BM_DeleteRange(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
T container(values.begin(), values.end());
// Remove and re-insert 10% of the keys per batch.
const int batch_size = (kBenchmarkValues + 9) / 10;
while (state.KeepRunningBatch(batch_size)) {
const int i = state.iterations();
const int start_index = i % kBenchmarkValues;
state.PauseTiming();
{
std::vector<V> removed;
removed.reserve(batch_size);
auto itr = container.find(key_of_value(values[start_index]));
auto start = itr;
for (int j = 0; j < batch_size; j++) {
if (itr == container.end()) {
state.ResumeTiming();
container.erase(start, itr);
state.PauseTiming();
itr = container.begin();
start = itr;
}
removed.push_back(*itr++);
}
state.ResumeTiming();
container.erase(start, itr);
state.PauseTiming();
container.insert(removed.begin(), removed.end());
}
state.ResumeTiming();
}
}
// Benchmark steady-state insert (into first half of range) and remove (from
// second half of range), treating the container approximately like a queue with
// log-time access for all elements. This benchmark does not test the case where
// insertion and removal happen in the same region of the tree. This benchmark
// counts two value constructors.
template <typename T>
void BM_QueueAddRem(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
T container;
const size_t half = kBenchmarkValues / 2;
std::vector<int> remove_keys(half);
std::vector<int> add_keys(half);
// We want to do the exact same work repeatedly, and the benchmark can end
// after a different number of iterations depending on the speed of the
// individual run so we use a large batch size here and ensure that we do
// deterministic work every batch.
while (state.KeepRunningBatch(half * kAddRemBatchSize)) {
state.PauseTiming();
container.clear();
for (size_t i = 0; i < half; ++i) {
remove_keys[i] = i;
add_keys[i] = i;
}
constexpr int kSeed = 5;
std::mt19937_64 rand(kSeed);
std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
std::shuffle(add_keys.begin(), add_keys.end(), rand);
// Note needs lazy generation of values.
Generator<V> g(kBenchmarkValues * kAddRemBatchSize);
for (size_t i = 0; i < half; ++i) {
container.insert(g(add_keys[i]));
container.insert(g(half + remove_keys[i]));
}
// There are three parts each of size "half":
// 1 is being deleted from [offset - half, offset)
// 2 is standing [offset, offset + half)
// 3 is being inserted into [offset + half, offset + 2 * half)
size_t offset = 0;
for (size_t i = 0; i < kAddRemBatchSize; ++i) {
std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
std::shuffle(add_keys.begin(), add_keys.end(), rand);
offset += half;
state.ResumeTiming();
for (size_t idx = 0; idx < half; ++idx) {
container.erase(key_of_value(g(offset - half + remove_keys[idx])));
container.insert(g(offset + half + add_keys[idx]));
}
state.PauseTiming();
}
state.ResumeTiming();
}
}
// Mixed insertion and deletion in the same range using pre-constructed values.
template <typename T>
void BM_MixedAddRem(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
T container;
// Create two random shuffles
std::vector<int> remove_keys(kBenchmarkValues);
std::vector<int> add_keys(kBenchmarkValues);
// We want to do the exact same work repeatedly, and the benchmark can end
// after a different number of iterations depending on the speed of the
// individual run so we use a large batch size here and ensure that we do
// deterministic work every batch.
while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) {
state.PauseTiming();
container.clear();
constexpr int kSeed = 7;
std::mt19937_64 rand(kSeed);
std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2);
// Insert the first half of the values (already in random order)
container.insert(values.begin(), values.begin() + kBenchmarkValues);
// Insert the first half of the values (already in random order)
for (size_t i = 0; i < kBenchmarkValues; ++i) {
// remove_keys and add_keys will be swapped before each round,
// therefore fill add_keys here w/ the keys being inserted, so
// they'll be the first to be removed.
remove_keys[i] = i + kBenchmarkValues;
add_keys[i] = i;
}
for (size_t i = 0; i < kAddRemBatchSize; ++i) {
remove_keys.swap(add_keys);
std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
std::shuffle(add_keys.begin(), add_keys.end(), rand);
state.ResumeTiming();
for (size_t idx = 0; idx < kBenchmarkValues; ++idx) {
container.erase(key_of_value(values[remove_keys[idx]]));
container.insert(values[add_keys[idx]]);
}
state.PauseTiming();
}
state.ResumeTiming();
}
}
// Insertion at end, removal from the beginning. This benchmark
// counts two value constructors.
// TODO(ezb): we could add a GenerateNext version of generator that could reduce
// noise for string-like types.
template <typename T>
void BM_Fifo(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
T container;
// Need lazy generation of values as state.max_iterations is large.
Generator<V> g(kBenchmarkValues + state.max_iterations);
for (int i = 0; i < kBenchmarkValues; i++) {
container.insert(g(i));
}
while (state.KeepRunning()) {
container.erase(container.begin());
container.insert(container.end(), g(state.iterations() + kBenchmarkValues));
}
}
// Iteration (forward) through the tree
template <typename T>
void BM_FwdIter(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
using R = typename T::value_type const*;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
T container(values.begin(), values.end());
auto iter = container.end();
R r = nullptr;
while (state.KeepRunning()) {
if (iter == container.end()) iter = container.begin();
r = &(*iter);
++iter;
}
benchmark::DoNotOptimize(r);
}
// Benchmark random range-construction of a container.
template <typename T>
void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) {
using V = typename remove_pair_const<typename T::value_type>::type;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
if (sorted) {
std::sort(values.begin(), values.end());
}
{
T container(values.begin(), values.end());
}
while (state.KeepRunning()) {
T container(values.begin(), values.end());
benchmark::DoNotOptimize(container);
}
}
template <typename T>
void BM_InsertRangeRandom(benchmark::State& state) {
BM_RangeConstructionImpl<T>(state, false);
}
template <typename T>
void BM_InsertRangeSorted(benchmark::State& state) {
BM_RangeConstructionImpl<T>(state, true);
}
#define STL_ORDERED_TYPES(value) \
using stl_set_##value = std::set<value>; \
using stl_map_##value = std::map<value, intptr_t>; \
using stl_multiset_##value = std::multiset<value>; \
using stl_multimap_##value = std::multimap<value, intptr_t>
using StdString = std::string;
STL_ORDERED_TYPES(int32_t);
STL_ORDERED_TYPES(int64_t);
STL_ORDERED_TYPES(StdString);
STL_ORDERED_TYPES(Cord);
STL_ORDERED_TYPES(Time);
#define STL_UNORDERED_TYPES(value) \
using stl_unordered_set_##value = std::unordered_set<value>; \
using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \
using flat_hash_set_##value = flat_hash_set<value>; \
using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \
using stl_unordered_multiset_##value = std::unordered_multiset<value>; \
using stl_unordered_multimap_##value = \
std::unordered_multimap<value, intptr_t>
#define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \
using stl_unordered_set_##value = std::unordered_set<value, hash>; \
using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \
using flat_hash_set_##value = flat_hash_set<value, hash>; \
using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \
using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \
using stl_unordered_multimap_##value = \
std::unordered_multimap<value, intptr_t, hash>
STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>);
STL_UNORDERED_TYPES(int32_t);
STL_UNORDERED_TYPES(int64_t);
STL_UNORDERED_TYPES(StdString);
STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>);
#define BTREE_TYPES(value) \
using btree_256_set_##value = \
btree_set<value, std::less<value>, std::allocator<value>>; \
using btree_256_map_##value = \
btree_map<value, intptr_t, std::less<value>, \
std::allocator<std::pair<const value, intptr_t>>>; \
using btree_256_multiset_##value = \
btree_multiset<value, std::less<value>, std::allocator<value>>; \
using btree_256_multimap_##value = \
btree_multimap<value, intptr_t, std::less<value>, \
std::allocator<std::pair<const value, intptr_t>>>
BTREE_TYPES(int32_t);
BTREE_TYPES(int64_t);
BTREE_TYPES(StdString);
BTREE_TYPES(Cord);
BTREE_TYPES(Time);
#define MY_BENCHMARK4(type, func) \
void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \
BENCHMARK(BM_##type##_##func)
#define MY_BENCHMARK3(type) \
MY_BENCHMARK4(type, Insert); \
MY_BENCHMARK4(type, InsertSorted); \
MY_BENCHMARK4(type, InsertSmall); \
MY_BENCHMARK4(type, Lookup); \
MY_BENCHMARK4(type, FullLookup); \
MY_BENCHMARK4(type, Delete); \
MY_BENCHMARK4(type, DeleteRange); \
MY_BENCHMARK4(type, QueueAddRem); \
MY_BENCHMARK4(type, MixedAddRem); \
MY_BENCHMARK4(type, Fifo); \
MY_BENCHMARK4(type, FwdIter); \
MY_BENCHMARK4(type, InsertRangeRandom); \
MY_BENCHMARK4(type, InsertRangeSorted)
#define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \
MY_BENCHMARK3(stl_##type); \
MY_BENCHMARK3(stl_unordered_##type); \
MY_BENCHMARK3(btree_256_##type)
#define MY_BENCHMARK2(type) \
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \
MY_BENCHMARK3(flat_hash_##type)
// Define MULTI_TESTING to see benchmarks for multi-containers also.
//
// You can use --copt=-DMULTI_TESTING.
#ifdef MULTI_TESTING
#define MY_BENCHMARK(type) \
MY_BENCHMARK2(set_##type); \
MY_BENCHMARK2(map_##type); \
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type)
#else
#define MY_BENCHMARK(type) \
MY_BENCHMARK2(set_##type); \
MY_BENCHMARK2(map_##type)
#endif
MY_BENCHMARK(int32_t);
MY_BENCHMARK(int64_t);
MY_BENCHMARK(StdString);
MY_BENCHMARK(Cord);
MY_BENCHMARK(Time);
// Define a type whose size and cost of moving are independently customizable.
// When sizeof(value_type) increases, we expect btree to no longer have as much
// cache-locality advantage over STL. When cost of moving increases, we expect
// btree to actually do more work than STL because it has to move values around
// and STL doesn't have to.
template <int Size, int Copies>
struct BigType {
BigType() : BigType(0) {}
explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
void Copy(const BigType& other) {
for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
// If Copies > Size, do extra copies.
for (int i = Size, idx = 0; i < Copies; ++i) {
int64_t tmp = other.values[idx];
benchmark::DoNotOptimize(tmp);
idx = idx + 1 == Size ? 0 : idx + 1;
}
}
BigType(const BigType& other) { Copy(other); }
BigType& operator=(const BigType& other) {
Copy(other);
return *this;
}
// Compare only the first Copies elements if Copies is less than Size.
bool operator<(const BigType& other) const {
return std::lexicographical_compare(
values.begin(), values.begin() + std::min(Size, Copies),
other.values.begin(), other.values.begin() + std::min(Size, Copies));
}
bool operator==(const BigType& other) const {
return std::equal(values.begin(), values.begin() + std::min(Size, Copies),
other.values.begin());
}
// Support absl::Hash.
template <typename State>
friend State AbslHashValue(State h, const BigType& b) {
for (int i = 0; i < Size && i < Copies; ++i)
h = State::combine(std::move(h), b.values[i]);
return h;
}
std::array<int64_t, Size> values;
};
#define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \
using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \
using stl_map_size##SIZE##copies##COPIES = \
std::map<BigType<SIZE, COPIES>, intptr_t>; \
using stl_multiset_size##SIZE##copies##COPIES = \
std::multiset<BigType<SIZE, COPIES>>; \
using stl_multimap_size##SIZE##copies##COPIES = \
std::multimap<BigType<SIZE, COPIES>, intptr_t>; \
using stl_unordered_set_size##SIZE##copies##COPIES = \
std::unordered_set<BigType<SIZE, COPIES>, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using stl_unordered_map_size##SIZE##copies##COPIES = \
std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using flat_hash_set_size##SIZE##copies##COPIES = \
flat_hash_set<BigType<SIZE, COPIES>>; \
using flat_hash_map_size##SIZE##copies##COPIES = \
flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \
using stl_unordered_multiset_size##SIZE##copies##COPIES = \
std::unordered_multiset<BigType<SIZE, COPIES>, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using stl_unordered_multimap_size##SIZE##copies##COPIES = \
std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using btree_256_set_size##SIZE##copies##COPIES = \
btree_set<BigType<SIZE, COPIES>>; \
using btree_256_map_size##SIZE##copies##COPIES = \
btree_map<BigType<SIZE, COPIES>, intptr_t>; \
using btree_256_multiset_size##SIZE##copies##COPIES = \
btree_multiset<BigType<SIZE, COPIES>>; \
using btree_256_multimap_size##SIZE##copies##COPIES = \
btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \
MY_BENCHMARK(size##SIZE##copies##COPIES)
// Define BIG_TYPE_TESTING to see benchmarks for more big types.
//
// You can use --copt=-DBIG_TYPE_TESTING.
#ifndef NODESIZE_TESTING
#ifdef BIG_TYPE_TESTING
BIG_TYPE_BENCHMARKS(1, 4);
BIG_TYPE_BENCHMARKS(4, 1);
BIG_TYPE_BENCHMARKS(4, 4);
BIG_TYPE_BENCHMARKS(1, 8);
BIG_TYPE_BENCHMARKS(8, 1);
BIG_TYPE_BENCHMARKS(8, 8);
BIG_TYPE_BENCHMARKS(1, 16);
BIG_TYPE_BENCHMARKS(16, 1);
BIG_TYPE_BENCHMARKS(16, 16);
BIG_TYPE_BENCHMARKS(1, 32);
BIG_TYPE_BENCHMARKS(32, 1);
BIG_TYPE_BENCHMARKS(32, 32);
#else
BIG_TYPE_BENCHMARKS(32, 32);
#endif
#endif
// Benchmark using unique_ptrs to large value types. In order to be able to use
// the same benchmark code as the other types, use a type that holds a
// unique_ptr and has a copy constructor.
template <int Size>
struct BigTypePtr {
BigTypePtr() : BigTypePtr(0) {}
explicit BigTypePtr(int x) {
ptr = absl::make_unique<BigType<Size, Size>>(x);
}
BigTypePtr(const BigTypePtr& other) {
ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
}
BigTypePtr(BigTypePtr&& other) noexcept = default;
BigTypePtr& operator=(const BigTypePtr& other) {
ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
}
BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
std::unique_ptr<BigType<Size, Size>> ptr;
};
template <int Size>
double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) {
const double bytes_used =
b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
const double bytes_per_value = bytes_used / b.size();
BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
return bytes_per_value;
}
template <int Size>
double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) {
const double bytes_used =
b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
const double bytes_per_value = bytes_used / b.size();
BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
return bytes_per_value;
}
#define BIG_TYPE_PTR_BENCHMARKS(SIZE) \
using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \
using stl_map_size##SIZE##copies##SIZE##ptr = \
std::map<int, BigType<SIZE, SIZE>>; \
using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \
std::unordered_set<BigType<SIZE, SIZE>, \
absl::Hash<BigType<SIZE, SIZE>>>; \
using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \
std::unordered_map<int, BigType<SIZE, SIZE>>; \
using flat_hash_set_size##SIZE##copies##SIZE##ptr = \
flat_hash_set<BigType<SIZE, SIZE>>; \
using flat_hash_map_size##SIZE##copies##SIZE##ptr = \
flat_hash_map<int, BigTypePtr<SIZE>>; \
using btree_256_set_size##SIZE##copies##SIZE##ptr = \
btree_set<BigTypePtr<SIZE>>; \
using btree_256_map_size##SIZE##copies##SIZE##ptr = \
btree_map<int, BigTypePtr<SIZE>>; \
MY_BENCHMARK3(stl_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(stl_map_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr)
BIG_TYPE_PTR_BENCHMARKS(32);
} // namespace
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl