Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

566 lines
20 KiB

Export of internal Abseil changes -- 0bfa836596a9c787a2f0bdc283011dd1f6810c6e by Benjamin Barenblat <bbaren@google.com>: Ignore missing CPU frequency on more architectures Linux on MIPS, PA-RISC, RISC-V, and SystemZ doesn’t expose the nominal CPU frequency via /sys, so don’t worry if `NominalCPUFrequency` returns 1.0 on those platforms. Some POWER machines expose the CPU frequency; others do not. Since we can’t predict which type of machine the tests will run on, simply disable testing for `NominalCPUFrequency` on POWER. PiperOrigin-RevId: 347079873 -- 492b6834ed4a07cbc3abccd846f7e37d8c556ee5 by Benjamin Barenblat <bbaren@google.com>: Use ABSL_HAVE_THREAD_LOCAL macro instead of copying code Reduce code duplication by checking the ABSL_HAVE_THREAD_LOCAL macro instead of copying code from base/config.h. PiperOrigin-RevId: 347079561 -- 8d656efce4da9cb032094377e58493d98427a536 by Abseil Team <absl-team@google.com>: Rollback PiperOrigin-RevId: 347078779 -- 221bc69ec6dd7e2777ffcff6942584f979ef6382 by Abseil Team <absl-team@google.com>: Add flag for 'shallow subcord' feature for experimental ring buffer rollout There is a potential trade-off of CPU cost vs over-sharing cord data for subcord of large cords. This flag allows making subcords shallow for ringbuffers (with a potential larger waste of referenced source cords), which allows us to make subcord fast for this apps that do no persist (unmodified / plain copied) sub cords. This change also introduces constants for the default settings, intended to keep the internal cord settings concistent with external flags. PiperOrigin-RevId: 347053271 -- 00a56c24293566734009f6bf2169a83fb37a35ba by Abseil Team <absl-team@google.com>: Revert the usage of variant<> in Cord iterator and reader. The introduction of the variant may lead to some missed compiler optimizations. PiperOrigin-RevId: 347053041 -- c7b7b5ed7e3ab46b1e75b80f1a7de0bda26c8f70 by Chris Kennelly <ckennelly@google.com>: Release library for integer power-of-2 functions and bit counting. PiperOrigin-RevId: 347035065 -- 5a035c0d9840b251967f9e7039fc6a4e01dd52f3 by Abseil Team <absl-team@google.com>: Restructure Cord::ChunkIterator for future ring buffer support. PiperOrigin-RevId: 346890054 GitOrigin-RevId: 0bfa836596a9c787a2f0bdc283011dd1f6810c6e Change-Id: I3a58e2a44cb4c6f2116c43e2a4ccbc319d3ccecf
4 years ago
// Copyright 2020 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/numeric/bits.h"
#include <limits>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/random/random.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
TEST(Rotate, Left) {
static_assert(rotl(uint8_t{0x12}, 0) == uint8_t{0x12}, "");
static_assert(rotl(uint16_t{0x1234}, 0) == uint16_t{0x1234}, "");
static_assert(rotl(uint32_t{0x12345678UL}, 0) == uint32_t{0x12345678UL}, "");
static_assert(rotl(uint64_t{0x12345678ABCDEF01ULL}, 0) ==
uint64_t{0x12345678ABCDEF01ULL},
"");
EXPECT_EQ(rotl(uint8_t{0x12}, 0), uint8_t{0x12});
EXPECT_EQ(rotl(uint16_t{0x1234}, 0), uint16_t{0x1234});
EXPECT_EQ(rotl(uint32_t{0x12345678UL}, 0), uint32_t{0x12345678UL});
EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, 0),
uint64_t{0x12345678ABCDEF01ULL});
EXPECT_EQ(rotl(uint8_t{0x12}, 8), uint8_t{0x12});
EXPECT_EQ(rotl(uint16_t{0x1234}, 16), uint16_t{0x1234});
EXPECT_EQ(rotl(uint32_t{0x12345678UL}, 32), uint32_t{0x12345678UL});
EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, 64),
uint64_t{0x12345678ABCDEF01ULL});
EXPECT_EQ(rotl(uint8_t{0x12}, -8), uint8_t{0x12});
EXPECT_EQ(rotl(uint16_t{0x1234}, -16), uint16_t{0x1234});
EXPECT_EQ(rotl(uint32_t{0x12345678UL}, -32), uint32_t{0x12345678UL});
EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, -64),
uint64_t{0x12345678ABCDEF01ULL});
EXPECT_EQ(rotl(uint8_t{0x12}, 4), uint8_t{0x21});
EXPECT_EQ(rotl(uint16_t{0x1234}, 4), uint16_t{0x2341});
EXPECT_EQ(rotl(uint32_t{0x12345678UL}, 4), uint32_t{0x23456781UL});
EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, 4),
uint64_t{0x2345678ABCDEF011ULL});
EXPECT_EQ(rotl(uint8_t{0x12}, -4), uint8_t{0x21});
EXPECT_EQ(rotl(uint16_t{0x1234}, -4), uint16_t{0x4123});
EXPECT_EQ(rotl(uint32_t{0x12345678UL}, -4), uint32_t{0x81234567UL});
EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, -4),
uint64_t{0x112345678ABCDEF0ULL});
}
TEST(Rotate, Right) {
static_assert(rotr(uint8_t{0x12}, 0) == uint8_t{0x12}, "");
static_assert(rotr(uint16_t{0x1234}, 0) == uint16_t{0x1234}, "");
static_assert(rotr(uint32_t{0x12345678UL}, 0) == uint32_t{0x12345678UL}, "");
static_assert(rotr(uint64_t{0x12345678ABCDEF01ULL}, 0) ==
uint64_t{0x12345678ABCDEF01ULL},
"");
EXPECT_EQ(rotr(uint8_t{0x12}, 0), uint8_t{0x12});
EXPECT_EQ(rotr(uint16_t{0x1234}, 0), uint16_t{0x1234});
EXPECT_EQ(rotr(uint32_t{0x12345678UL}, 0), uint32_t{0x12345678UL});
EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, 0),
uint64_t{0x12345678ABCDEF01ULL});
EXPECT_EQ(rotr(uint8_t{0x12}, 8), uint8_t{0x12});
EXPECT_EQ(rotr(uint16_t{0x1234}, 16), uint16_t{0x1234});
EXPECT_EQ(rotr(uint32_t{0x12345678UL}, 32), uint32_t{0x12345678UL});
EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, 64),
uint64_t{0x12345678ABCDEF01ULL});
EXPECT_EQ(rotr(uint8_t{0x12}, -8), uint8_t{0x12});
EXPECT_EQ(rotr(uint16_t{0x1234}, -16), uint16_t{0x1234});
EXPECT_EQ(rotr(uint32_t{0x12345678UL}, -32), uint32_t{0x12345678UL});
EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, -64),
uint64_t{0x12345678ABCDEF01ULL});
EXPECT_EQ(rotr(uint8_t{0x12}, 4), uint8_t{0x21});
EXPECT_EQ(rotr(uint16_t{0x1234}, 4), uint16_t{0x4123});
EXPECT_EQ(rotr(uint32_t{0x12345678UL}, 4), uint32_t{0x81234567UL});
EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, 4),
uint64_t{0x112345678ABCDEF0ULL});
EXPECT_EQ(rotr(uint8_t{0x12}, -4), uint8_t{0x21});
EXPECT_EQ(rotr(uint16_t{0x1234}, -4), uint16_t{0x2341});
EXPECT_EQ(rotr(uint32_t{0x12345678UL}, -4), uint32_t{0x23456781UL});
EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, -4),
uint64_t{0x2345678ABCDEF011ULL});
}
TEST(Rotate, Symmetry) {
// rotr(x, s) is equivalent to rotl(x, -s)
absl::BitGen rng;
constexpr int kTrials = 100;
for (int i = 0; i < kTrials; ++i) {
uint8_t value = absl::Uniform(rng, std::numeric_limits<uint8_t>::min(),
std::numeric_limits<uint8_t>::max());
int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint8_t>::digits,
2 * std::numeric_limits<uint8_t>::digits);
EXPECT_EQ(rotl(value, shift), rotr(value, -shift));
}
for (int i = 0; i < kTrials; ++i) {
uint16_t value = absl::Uniform(rng, std::numeric_limits<uint16_t>::min(),
std::numeric_limits<uint16_t>::max());
int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint16_t>::digits,
2 * std::numeric_limits<uint16_t>::digits);
EXPECT_EQ(rotl(value, shift), rotr(value, -shift));
}
for (int i = 0; i < kTrials; ++i) {
uint32_t value = absl::Uniform(rng, std::numeric_limits<uint32_t>::min(),
std::numeric_limits<uint32_t>::max());
int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint32_t>::digits,
2 * std::numeric_limits<uint32_t>::digits);
EXPECT_EQ(rotl(value, shift), rotr(value, -shift));
}
for (int i = 0; i < kTrials; ++i) {
uint64_t value = absl::Uniform(rng, std::numeric_limits<uint64_t>::min(),
std::numeric_limits<uint64_t>::max());
int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint64_t>::digits,
2 * std::numeric_limits<uint64_t>::digits);
EXPECT_EQ(rotl(value, shift), rotr(value, -shift));
}
}
TEST(Counting, LeadingZeroes) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ
static_assert(countl_zero(uint8_t{}) == 8, "");
static_assert(countl_zero(static_cast<uint8_t>(-1)) == 0, "");
static_assert(countl_zero(uint16_t{}) == 16, "");
static_assert(countl_zero(static_cast<uint16_t>(-1)) == 0, "");
static_assert(countl_zero(uint32_t{}) == 32, "");
static_assert(countl_zero(~uint32_t{}) == 0, "");
static_assert(countl_zero(uint64_t{}) == 64, "");
static_assert(countl_zero(~uint64_t{}) == 0, "");
#endif
EXPECT_EQ(countl_zero(uint8_t{}), 8);
EXPECT_EQ(countl_zero(static_cast<uint8_t>(-1)), 0);
EXPECT_EQ(countl_zero(uint16_t{}), 16);
EXPECT_EQ(countl_zero(static_cast<uint16_t>(-1)), 0);
EXPECT_EQ(countl_zero(uint32_t{}), 32);
EXPECT_EQ(countl_zero(~uint32_t{}), 0);
EXPECT_EQ(countl_zero(uint64_t{}), 64);
EXPECT_EQ(countl_zero(~uint64_t{}), 0);
for (int i = 0; i < 8; i++) {
EXPECT_EQ(countl_zero(static_cast<uint8_t>(1u << i)), 7 - i);
}
for (int i = 0; i < 16; i++) {
EXPECT_EQ(countl_zero(static_cast<uint16_t>(1u << i)), 15 - i);
}
for (int i = 0; i < 32; i++) {
EXPECT_EQ(countl_zero(uint32_t{1} << i), 31 - i);
}
for (int i = 0; i < 64; i++) {
EXPECT_EQ(countl_zero(uint64_t{1} << i), 63 - i);
}
}
TEST(Counting, LeadingOnes) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ
static_assert(countl_one(uint8_t{}) == 0, "");
static_assert(countl_one(static_cast<uint8_t>(-1)) == 8, "");
static_assert(countl_one(uint16_t{}) == 0, "");
static_assert(countl_one(static_cast<uint16_t>(-1)) == 16, "");
static_assert(countl_one(uint32_t{}) == 0, "");
static_assert(countl_one(~uint32_t{}) == 32, "");
static_assert(countl_one(uint64_t{}) == 0, "");
static_assert(countl_one(~uint64_t{}) == 64, "");
#endif
EXPECT_EQ(countl_one(uint8_t{}), 0);
EXPECT_EQ(countl_one(static_cast<uint8_t>(-1)), 8);
EXPECT_EQ(countl_one(uint16_t{}), 0);
EXPECT_EQ(countl_one(static_cast<uint16_t>(-1)), 16);
EXPECT_EQ(countl_one(uint32_t{}), 0);
EXPECT_EQ(countl_one(~uint32_t{}), 32);
EXPECT_EQ(countl_one(uint64_t{}), 0);
EXPECT_EQ(countl_one(~uint64_t{}), 64);
}
TEST(Counting, TrailingZeroes) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CTZ
static_assert(countr_zero(uint8_t{}) == 8, "");
static_assert(countr_zero(static_cast<uint8_t>(-1)) == 0, "");
static_assert(countr_zero(uint16_t{}) == 16, "");
static_assert(countr_zero(static_cast<uint16_t>(-1)) == 0, "");
static_assert(countr_zero(uint32_t{}) == 32, "");
static_assert(countr_zero(~uint32_t{}) == 0, "");
static_assert(countr_zero(uint64_t{}) == 64, "");
static_assert(countr_zero(~uint64_t{}) == 0, "");
#endif
EXPECT_EQ(countr_zero(uint8_t{}), 8);
EXPECT_EQ(countr_zero(static_cast<uint8_t>(-1)), 0);
EXPECT_EQ(countr_zero(uint16_t{}), 16);
EXPECT_EQ(countr_zero(static_cast<uint16_t>(-1)), 0);
EXPECT_EQ(countr_zero(uint32_t{}), 32);
EXPECT_EQ(countr_zero(~uint32_t{}), 0);
EXPECT_EQ(countr_zero(uint64_t{}), 64);
EXPECT_EQ(countr_zero(~uint64_t{}), 0);
}
TEST(Counting, TrailingOnes) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CTZ
static_assert(countr_one(uint8_t{}) == 0, "");
static_assert(countr_one(static_cast<uint8_t>(-1)) == 8, "");
static_assert(countr_one(uint16_t{}) == 0, "");
static_assert(countr_one(static_cast<uint16_t>(-1)) == 16, "");
static_assert(countr_one(uint32_t{}) == 0, "");
static_assert(countr_one(~uint32_t{}) == 32, "");
static_assert(countr_one(uint64_t{}) == 0, "");
static_assert(countr_one(~uint64_t{}) == 64, "");
#endif
EXPECT_EQ(countr_one(uint8_t{}), 0);
EXPECT_EQ(countr_one(static_cast<uint8_t>(-1)), 8);
EXPECT_EQ(countr_one(uint16_t{}), 0);
EXPECT_EQ(countr_one(static_cast<uint16_t>(-1)), 16);
EXPECT_EQ(countr_one(uint32_t{}), 0);
EXPECT_EQ(countr_one(~uint32_t{}), 32);
EXPECT_EQ(countr_one(uint64_t{}), 0);
EXPECT_EQ(countr_one(~uint64_t{}), 64);
}
TEST(Counting, Popcount) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_POPCOUNT
static_assert(popcount(uint8_t{}) == 0, "");
static_assert(popcount(uint8_t{1}) == 1, "");
static_assert(popcount(static_cast<uint8_t>(-1)) == 8, "");
static_assert(popcount(uint16_t{}) == 0, "");
static_assert(popcount(uint16_t{1}) == 1, "");
static_assert(popcount(static_cast<uint16_t>(-1)) == 16, "");
static_assert(popcount(uint32_t{}) == 0, "");
static_assert(popcount(uint32_t{1}) == 1, "");
static_assert(popcount(~uint32_t{}) == 32, "");
static_assert(popcount(uint64_t{}) == 0, "");
static_assert(popcount(uint64_t{1}) == 1, "");
static_assert(popcount(~uint64_t{}) == 64, "");
#endif // ABSL_INTERNAL_HAS_CONSTEXPR_POPCOUNT
EXPECT_EQ(popcount(uint8_t{}), 0);
EXPECT_EQ(popcount(uint8_t{1}), 1);
EXPECT_EQ(popcount(static_cast<uint8_t>(-1)), 8);
EXPECT_EQ(popcount(uint16_t{}), 0);
EXPECT_EQ(popcount(uint16_t{1}), 1);
EXPECT_EQ(popcount(static_cast<uint16_t>(-1)), 16);
EXPECT_EQ(popcount(uint32_t{}), 0);
EXPECT_EQ(popcount(uint32_t{1}), 1);
EXPECT_EQ(popcount(~uint32_t{}), 32);
EXPECT_EQ(popcount(uint64_t{}), 0);
EXPECT_EQ(popcount(uint64_t{1}), 1);
EXPECT_EQ(popcount(~uint64_t{}), 64);
for (int i = 0; i < 8; i++) {
EXPECT_EQ(popcount(static_cast<uint8_t>(uint8_t{1} << i)), 1);
EXPECT_EQ(popcount(static_cast<uint8_t>(static_cast<uint8_t>(-1) ^
(uint8_t{1} << i))),
7);
}
for (int i = 0; i < 16; i++) {
EXPECT_EQ(popcount(static_cast<uint16_t>(uint16_t{1} << i)), 1);
EXPECT_EQ(popcount(static_cast<uint16_t>(static_cast<uint16_t>(-1) ^
(uint16_t{1} << i))),
15);
}
for (int i = 0; i < 32; i++) {
EXPECT_EQ(popcount(uint32_t{1} << i), 1);
EXPECT_EQ(popcount(static_cast<uint32_t>(-1) ^ (uint32_t{1} << i)), 31);
}
for (int i = 0; i < 64; i++) {
EXPECT_EQ(popcount(uint64_t{1} << i), 1);
EXPECT_EQ(popcount(static_cast<uint64_t>(-1) ^ (uint64_t{1} << i)), 63);
}
}
template <typename T>
struct PopcountInput {
T value = 0;
int expected = 0;
};
template <typename T>
PopcountInput<T> GeneratePopcountInput(absl::BitGen& gen) {
PopcountInput<T> ret;
for (int i = 0; i < std::numeric_limits<T>::digits; i++) {
bool coin = absl::Bernoulli(gen, 0.2);
if (coin) {
ret.value |= T{1} << i;
ret.expected++;
}
}
return ret;
}
TEST(Counting, PopcountFuzz) {
absl::BitGen rng;
constexpr int kTrials = 100;
for (int i = 0; i < kTrials; ++i) {
auto input = GeneratePopcountInput<uint8_t>(rng);
EXPECT_EQ(popcount(input.value), input.expected);
}
for (int i = 0; i < kTrials; ++i) {
auto input = GeneratePopcountInput<uint16_t>(rng);
EXPECT_EQ(popcount(input.value), input.expected);
}
for (int i = 0; i < kTrials; ++i) {
auto input = GeneratePopcountInput<uint32_t>(rng);
EXPECT_EQ(popcount(input.value), input.expected);
}
for (int i = 0; i < kTrials; ++i) {
auto input = GeneratePopcountInput<uint64_t>(rng);
EXPECT_EQ(popcount(input.value), input.expected);
}
}
TEST(IntegralPowersOfTwo, SingleBit) {
EXPECT_FALSE(has_single_bit(uint8_t{}));
EXPECT_FALSE(has_single_bit(static_cast<uint8_t>(-1)));
EXPECT_FALSE(has_single_bit(uint16_t{}));
EXPECT_FALSE(has_single_bit(static_cast<uint16_t>(-1)));
EXPECT_FALSE(has_single_bit(uint32_t{}));
EXPECT_FALSE(has_single_bit(~uint32_t{}));
EXPECT_FALSE(has_single_bit(uint64_t{}));
EXPECT_FALSE(has_single_bit(~uint64_t{}));
static_assert(!has_single_bit(0u), "");
static_assert(has_single_bit(1u), "");
static_assert(has_single_bit(2u), "");
static_assert(!has_single_bit(3u), "");
static_assert(has_single_bit(4u), "");
static_assert(!has_single_bit(1337u), "");
static_assert(has_single_bit(65536u), "");
static_assert(has_single_bit(uint32_t{1} << 30), "");
static_assert(has_single_bit(uint64_t{1} << 42), "");
EXPECT_FALSE(has_single_bit(0u));
EXPECT_TRUE(has_single_bit(1u));
EXPECT_TRUE(has_single_bit(2u));
EXPECT_FALSE(has_single_bit(3u));
EXPECT_TRUE(has_single_bit(4u));
EXPECT_FALSE(has_single_bit(1337u));
EXPECT_TRUE(has_single_bit(65536u));
EXPECT_TRUE(has_single_bit(uint32_t{1} << 30));
EXPECT_TRUE(has_single_bit(uint64_t{1} << 42));
EXPECT_TRUE(has_single_bit(
static_cast<uint8_t>(std::numeric_limits<uint8_t>::max() / 2 + 1)));
EXPECT_TRUE(has_single_bit(
static_cast<uint16_t>(std::numeric_limits<uint16_t>::max() / 2 + 1)));
EXPECT_TRUE(has_single_bit(
static_cast<uint32_t>(std::numeric_limits<uint32_t>::max() / 2 + 1)));
EXPECT_TRUE(has_single_bit(
static_cast<uint64_t>(std::numeric_limits<uint64_t>::max() / 2 + 1)));
}
template <typename T, T arg, T = bit_ceil(arg)>
bool IsBitCeilConstantExpression(int) {
return true;
}
template <typename T, T arg>
bool IsBitCeilConstantExpression(char) {
return false;
}
TEST(IntegralPowersOfTwo, Ceiling) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ
static_assert(bit_ceil(0u) == 1, "");
static_assert(bit_ceil(1u) == 1, "");
static_assert(bit_ceil(2u) == 2, "");
static_assert(bit_ceil(3u) == 4, "");
static_assert(bit_ceil(4u) == 4, "");
static_assert(bit_ceil(1337u) == 2048, "");
static_assert(bit_ceil(65536u) == 65536, "");
static_assert(bit_ceil(65536u - 1337u) == 65536, "");
static_assert(bit_ceil(uint32_t{0x80000000}) == uint32_t{0x80000000}, "");
static_assert(bit_ceil(uint64_t{0x40000000000}) == uint64_t{0x40000000000},
"");
static_assert(
bit_ceil(uint64_t{0x8000000000000000}) == uint64_t{0x8000000000000000},
"");
EXPECT_TRUE((IsBitCeilConstantExpression<uint8_t, uint8_t{0x0}>(0)));
EXPECT_TRUE((IsBitCeilConstantExpression<uint8_t, uint8_t{0x80}>(0)));
EXPECT_FALSE((IsBitCeilConstantExpression<uint8_t, uint8_t{0x81}>(0)));
EXPECT_FALSE((IsBitCeilConstantExpression<uint8_t, uint8_t{0xff}>(0)));
EXPECT_TRUE((IsBitCeilConstantExpression<uint16_t, uint16_t{0x0}>(0)));
EXPECT_TRUE((IsBitCeilConstantExpression<uint16_t, uint16_t{0x8000}>(0)));
EXPECT_FALSE((IsBitCeilConstantExpression<uint16_t, uint16_t{0x8001}>(0)));
EXPECT_FALSE((IsBitCeilConstantExpression<uint16_t, uint16_t{0xffff}>(0)));
EXPECT_TRUE((IsBitCeilConstantExpression<uint32_t, uint32_t{0x0}>(0)));
EXPECT_TRUE((IsBitCeilConstantExpression<uint32_t, uint32_t{0x80000000}>(0)));
EXPECT_FALSE(
(IsBitCeilConstantExpression<uint32_t, uint32_t{0x80000001}>(0)));
EXPECT_FALSE(
(IsBitCeilConstantExpression<uint32_t, uint32_t{0xffffffff}>(0)));
EXPECT_TRUE((IsBitCeilConstantExpression<uint64_t, uint64_t{0x0}>(0)));
EXPECT_TRUE(
(IsBitCeilConstantExpression<uint64_t, uint64_t{0x8000000000000000}>(0)));
EXPECT_FALSE(
(IsBitCeilConstantExpression<uint64_t, uint64_t{0x8000000000000001}>(0)));
EXPECT_FALSE(
(IsBitCeilConstantExpression<uint64_t, uint64_t{0xffffffffffffffff}>(0)));
#endif
EXPECT_EQ(bit_ceil(0u), 1);
EXPECT_EQ(bit_ceil(1u), 1);
EXPECT_EQ(bit_ceil(2u), 2);
EXPECT_EQ(bit_ceil(3u), 4);
EXPECT_EQ(bit_ceil(4u), 4);
EXPECT_EQ(bit_ceil(1337u), 2048);
EXPECT_EQ(bit_ceil(65536u), 65536);
EXPECT_EQ(bit_ceil(65536u - 1337u), 65536);
EXPECT_EQ(bit_ceil(uint64_t{0x40000000000}), uint64_t{0x40000000000});
}
TEST(IntegralPowersOfTwo, Floor) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ
static_assert(bit_floor(0u) == 0, "");
static_assert(bit_floor(1u) == 1, "");
static_assert(bit_floor(2u) == 2, "");
static_assert(bit_floor(3u) == 2, "");
static_assert(bit_floor(4u) == 4, "");
static_assert(bit_floor(1337u) == 1024, "");
static_assert(bit_floor(65536u) == 65536, "");
static_assert(bit_floor(65536u - 1337u) == 32768, "");
static_assert(bit_floor(uint64_t{0x40000000000}) == uint64_t{0x40000000000},
"");
#endif
EXPECT_EQ(bit_floor(0u), 0);
EXPECT_EQ(bit_floor(1u), 1);
EXPECT_EQ(bit_floor(2u), 2);
EXPECT_EQ(bit_floor(3u), 2);
EXPECT_EQ(bit_floor(4u), 4);
EXPECT_EQ(bit_floor(1337u), 1024);
EXPECT_EQ(bit_floor(65536u), 65536);
EXPECT_EQ(bit_floor(65536u - 1337u), 32768);
EXPECT_EQ(bit_floor(uint64_t{0x40000000000}), uint64_t{0x40000000000});
for (int i = 0; i < 8; i++) {
uint8_t input = uint8_t{1} << i;
EXPECT_EQ(bit_floor(input), input);
if (i > 0) {
EXPECT_EQ(bit_floor(static_cast<uint8_t>(input + 1)), input);
}
}
for (int i = 0; i < 16; i++) {
uint16_t input = uint16_t{1} << i;
EXPECT_EQ(bit_floor(input), input);
if (i > 0) {
EXPECT_EQ(bit_floor(static_cast<uint16_t>(input + 1)), input);
}
}
for (int i = 0; i < 32; i++) {
uint32_t input = uint32_t{1} << i;
EXPECT_EQ(bit_floor(input), input);
if (i > 0) {
EXPECT_EQ(bit_floor(input + 1), input);
}
}
for (int i = 0; i < 64; i++) {
uint64_t input = uint64_t{1} << i;
EXPECT_EQ(bit_floor(input), input);
if (i > 0) {
EXPECT_EQ(bit_floor(input + 1), input);
}
}
}
TEST(IntegralPowersOfTwo, Width) {
#if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ
static_assert(bit_width(uint8_t{}) == 0, "");
static_assert(bit_width(uint8_t{1}) == 1, "");
static_assert(bit_width(uint8_t{3}) == 2, "");
static_assert(bit_width(static_cast<uint8_t>(-1)) == 8, "");
static_assert(bit_width(uint16_t{}) == 0, "");
static_assert(bit_width(uint16_t{1}) == 1, "");
static_assert(bit_width(uint16_t{3}) == 2, "");
static_assert(bit_width(static_cast<uint16_t>(-1)) == 16, "");
static_assert(bit_width(uint32_t{}) == 0, "");
static_assert(bit_width(uint32_t{1}) == 1, "");
static_assert(bit_width(uint32_t{3}) == 2, "");
static_assert(bit_width(~uint32_t{}) == 32, "");
static_assert(bit_width(uint64_t{}) == 0, "");
static_assert(bit_width(uint64_t{1}) == 1, "");
static_assert(bit_width(uint64_t{3}) == 2, "");
static_assert(bit_width(~uint64_t{}) == 64, "");
#endif
EXPECT_EQ(bit_width(uint8_t{}), 0);
EXPECT_EQ(bit_width(uint8_t{1}), 1);
EXPECT_EQ(bit_width(uint8_t{3}), 2);
EXPECT_EQ(bit_width(static_cast<uint8_t>(-1)), 8);
EXPECT_EQ(bit_width(uint16_t{}), 0);
EXPECT_EQ(bit_width(uint16_t{1}), 1);
EXPECT_EQ(bit_width(uint16_t{3}), 2);
EXPECT_EQ(bit_width(static_cast<uint16_t>(-1)), 16);
EXPECT_EQ(bit_width(uint32_t{}), 0);
EXPECT_EQ(bit_width(uint32_t{1}), 1);
EXPECT_EQ(bit_width(uint32_t{3}), 2);
EXPECT_EQ(bit_width(~uint32_t{}), 32);
EXPECT_EQ(bit_width(uint64_t{}), 0);
EXPECT_EQ(bit_width(uint64_t{1}), 1);
EXPECT_EQ(bit_width(uint64_t{3}), 2);
EXPECT_EQ(bit_width(~uint64_t{}), 64);
for (int i = 0; i < 8; i++) {
EXPECT_EQ(bit_width(static_cast<uint8_t>(uint8_t{1} << i)), i + 1);
}
for (int i = 0; i < 16; i++) {
EXPECT_EQ(bit_width(static_cast<uint16_t>(uint16_t{1} << i)), i + 1);
}
for (int i = 0; i < 32; i++) {
EXPECT_EQ(bit_width(uint32_t{1} << i), i + 1);
}
for (int i = 0; i < 64; i++) {
EXPECT_EQ(bit_width(uint64_t{1} << i), i + 1);
}
}
} // namespace
ABSL_NAMESPACE_END
} // namespace absl