Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

252 lines
8.1 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/discrete_distribution.h"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/strip.h"
namespace {
template <typename IntType>
class DiscreteDistributionTypeTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
uint32_t, int64_t, uint64_t>;
TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);
TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
using param_type =
typename absl::discrete_distribution<TypeParam>::param_type;
absl::discrete_distribution<TypeParam> empty;
EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));
absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});
// Validate that the probabilities sum to 1.0. We picked values which
// can be represented exactly to avoid floating-point roundoff error.
double s = 0;
for (const auto& x : before.probabilities()) {
s += x;
}
EXPECT_EQ(s, 1.0);
EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));
// Validate the same data via an initializer list.
{
std::vector<double> data({1.0, 2.0, 1.0});
absl::discrete_distribution<TypeParam> via_param{
param_type(std::begin(data), std::end(data))};
EXPECT_EQ(via_param, before);
}
std::stringstream ss;
ss << before;
absl::discrete_distribution<TypeParam> after;
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before, after);
}
TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
auto fn = [](double x) { return x; };
{
absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
}
{
absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
// => fn(1.0 + 0 * 4 + 2) => 3
// => fn(1.0 + 1 * 4 + 2) => 7
EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
}
}
TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
Export of internal Abseil changes -- 5f3c139695d5c497ca030e95a607537a7be7caa7 by Benjamin Barenblat <bbaren@google.com>: Don’t examine irrelevant destination buckets in DiscreteDistributionTest Abseil generates discrete distributions using Walker’s aliasing algorithm. This creates uniformly distributed buckets, each with a probability of sending traffic to a different bucket. Abseil represents a bucket as a pair (probability of retaining traffic × alternate bucket if traffic is passed) and a distribution as a vector of such pairs. For example, {(0.3, 1), (1.0, 1)} represents a distribution with two buckets, the zeroth of which passes 70% of its traffic to bucket 1 and the first of which holds on to all its traffic. This representation is not unique: When a bucket retains traffic with probability 1, the alternate bucket is irrelevant. Continuing the example above, {(0.3, 1), (1.0, 0)} _also_ represents a two-bucket distribution where the zeroth bucket passes 70% of its traffic to the first and the first hangs on to all traffic. Exactly what representation Abseil generates for a given input is related to how much precision is used in intermediate floating-point operations, which is an architectural implementation detail. Remove sensitivity to that detail by not examining the alternate bucket when the retention probability is 1.0. PiperOrigin-RevId: 372993410 -- 062ac80699f748831c09a061538abffec2cdea5c by Martijn Vels <mvels@google.com>: Avoid alredy sampled cord remaining sampled if not picked or source is sampled PiperOrigin-RevId: 372985990 -- a9f3537e1110b7bb6450fd72a03f0c5dc6b8c89b by Evan Brown <ezb@google.com>: Add tests for function pointer comparators, comparators that have SFINAE-visible comparison operators that are unimplemented, and for implicit construction from unadapted comparators. PiperOrigin-RevId: 372927616 GitOrigin-RevId: 5f3c139695d5c497ca030e95a607537a7be7caa7 Change-Id: I996a8452e7bd88f9dd2e59633b01bbc09f42620d
4 years ago
using testing::_;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
using testing::Pair;
{
std::vector<double> p({1.0, 2.0, 3.0});
std::vector<std::pair<double, size_t>> q =
absl::random_internal::InitDiscreteDistribution(&p);
EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));
// Each bucket is p=1/3, so bucket 0 will send half it's traffic
// to bucket 2, while the rest will retain all of their traffic.
EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2), //
Export of internal Abseil changes -- 5f3c139695d5c497ca030e95a607537a7be7caa7 by Benjamin Barenblat <bbaren@google.com>: Don’t examine irrelevant destination buckets in DiscreteDistributionTest Abseil generates discrete distributions using Walker’s aliasing algorithm. This creates uniformly distributed buckets, each with a probability of sending traffic to a different bucket. Abseil represents a bucket as a pair (probability of retaining traffic × alternate bucket if traffic is passed) and a distribution as a vector of such pairs. For example, {(0.3, 1), (1.0, 1)} represents a distribution with two buckets, the zeroth of which passes 70% of its traffic to bucket 1 and the first of which holds on to all its traffic. This representation is not unique: When a bucket retains traffic with probability 1, the alternate bucket is irrelevant. Continuing the example above, {(0.3, 1), (1.0, 0)} _also_ represents a two-bucket distribution where the zeroth bucket passes 70% of its traffic to the first and the first hangs on to all traffic. Exactly what representation Abseil generates for a given input is related to how much precision is used in intermediate floating-point operations, which is an architectural implementation detail. Remove sensitivity to that detail by not examining the alternate bucket when the retention probability is 1.0. PiperOrigin-RevId: 372993410 -- 062ac80699f748831c09a061538abffec2cdea5c by Martijn Vels <mvels@google.com>: Avoid alredy sampled cord remaining sampled if not picked or source is sampled PiperOrigin-RevId: 372985990 -- a9f3537e1110b7bb6450fd72a03f0c5dc6b8c89b by Evan Brown <ezb@google.com>: Add tests for function pointer comparators, comparators that have SFINAE-visible comparison operators that are unimplemented, and for implicit construction from unadapted comparators. PiperOrigin-RevId: 372927616 GitOrigin-RevId: 5f3c139695d5c497ca030e95a607537a7be7caa7 Change-Id: I996a8452e7bd88f9dd2e59633b01bbc09f42620d
4 years ago
Pair(1.0, _), //
Pair(1.0, _)));
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
}
{
std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});
std::vector<std::pair<double, size_t>> q =
absl::random_internal::InitDiscreteDistribution(&p);
EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
2 / 13.0));
// A more complex bucketing solution: Each bucket has p=0.2
// So buckets 0, 1, 4 will send their alternate traffic elsewhere, which
// happens to be bucket 3.
// However, summing up that alternate traffic gives bucket 3 too much
// traffic, so it will send some traffic to bucket 2.
constexpr double b0 = 1.0 / 13.0 / 0.2;
constexpr double b1 = 2.0 / 13.0 / 0.2;
constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3), //
Pair(b1, 3), //
Export of internal Abseil changes -- 5f3c139695d5c497ca030e95a607537a7be7caa7 by Benjamin Barenblat <bbaren@google.com>: Don’t examine irrelevant destination buckets in DiscreteDistributionTest Abseil generates discrete distributions using Walker’s aliasing algorithm. This creates uniformly distributed buckets, each with a probability of sending traffic to a different bucket. Abseil represents a bucket as a pair (probability of retaining traffic × alternate bucket if traffic is passed) and a distribution as a vector of such pairs. For example, {(0.3, 1), (1.0, 1)} represents a distribution with two buckets, the zeroth of which passes 70% of its traffic to bucket 1 and the first of which holds on to all its traffic. This representation is not unique: When a bucket retains traffic with probability 1, the alternate bucket is irrelevant. Continuing the example above, {(0.3, 1), (1.0, 0)} _also_ represents a two-bucket distribution where the zeroth bucket passes 70% of its traffic to the first and the first hangs on to all traffic. Exactly what representation Abseil generates for a given input is related to how much precision is used in intermediate floating-point operations, which is an architectural implementation detail. Remove sensitivity to that detail by not examining the alternate bucket when the retention probability is 1.0. PiperOrigin-RevId: 372993410 -- 062ac80699f748831c09a061538abffec2cdea5c by Martijn Vels <mvels@google.com>: Avoid alredy sampled cord remaining sampled if not picked or source is sampled PiperOrigin-RevId: 372985990 -- a9f3537e1110b7bb6450fd72a03f0c5dc6b8c89b by Evan Brown <ezb@google.com>: Add tests for function pointer comparators, comparators that have SFINAE-visible comparison operators that are unimplemented, and for implicit construction from unadapted comparators. PiperOrigin-RevId: 372927616 GitOrigin-RevId: 5f3c139695d5c497ca030e95a607537a7be7caa7 Change-Id: I996a8452e7bd88f9dd2e59633b01bbc09f42620d
4 years ago
Pair(1.0, _), //
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
Pair(b3, 2), //
Pair(b1, 3)));
}
}
TEST(DiscreteDistributionTest, ChiSquaredTest50) {
using absl::random_internal::kChiSquared;
constexpr size_t kTrials = 10000;
constexpr int kBuckets = 50; // inclusive, so actally +1
// 1-in-100000 threshold, but remember, there are about 8 tests
// in this file. And the test could fail for other reasons.
// Empirically validated with --runs_per_test=10000.
const int kThreshold =
absl::random_internal::ChiSquareValue(kBuckets, 0.99999);
std::vector<double> weights(kBuckets, 0);
std::iota(std::begin(weights), std::end(weights), 1);
absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
std::vector<int32_t> counts(kBuckets, 0);
for (size_t i = 0; i < kTrials; i++) {
auto x = dist(rng);
counts[x]++;
}
// Scale weights.
double sum = 0;
for (double x : weights) {
sum += x;
}
for (double& x : weights) {
x = kTrials * (x / sum);
}
double chi_square =
absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
std::begin(weights), std::end(weights));
if (chi_square > kThreshold) {
double p_value =
absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
// Chi-squared test failed. Output does not appear to be uniform.
std::string msg;
for (size_t i = 0; i < counts.size(); i++) {
absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
}
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
kThreshold);
ABSL_RAW_LOG(INFO, "%s", msg.c_str());
FAIL() << msg;
}
}
TEST(DiscreteDistributionTest, StabilityTest) {
// absl::discrete_distribution stabilitiy relies on
// absl::uniform_int_distribution and absl::bernoulli_distribution.
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(6);
{
absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
EXPECT_EQ(0, dist.min());
EXPECT_EQ(4, dist.max());
for (auto& v : output) {
v = dist(urbg);
}
EXPECT_EQ(12, urbg.invocations());
}
// With 12 calls to urbg, each call into discrete_distribution consumes
// precisely 2 values: one for the uniform call, and a second for the
// bernoulli.
//
// Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can
//
// uniform: 443210143131
// bernoulli: b0 000011100101
// bernoulli: b1 001111101101
// bernoulli: b2 111111111111
// bernoulli: b3 001111101111
// bernoulli: b4 001111101101
// ...
EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));
{
urbg.reset();
absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
EXPECT_EQ(0, dist.min());
EXPECT_EQ(4, dist.max());
for (auto& v : output) {
v = dist(urbg);
}
EXPECT_EQ(12, urbg.invocations());
}
EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
}
} // namespace