Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1483 lines
49 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This library provides Symbolize() function that symbolizes program
// counters to their corresponding symbol names on linux platforms.
// This library has a minimal implementation of an ELF symbol table
// reader (i.e. it doesn't depend on libelf, etc.).
//
// The algorithm used in Symbolize() is as follows.
//
// 1. Go through a list of maps in /proc/self/maps and find the map
// containing the program counter.
//
// 2. Open the mapped file and find a regular symbol table inside.
// Iterate over symbols in the symbol table and look for the symbol
// containing the program counter. If such a symbol is found,
// obtain the symbol name, and demangle the symbol if possible.
// If the symbol isn't found in the regular symbol table (binary is
// stripped), try the same thing with a dynamic symbol table.
//
// Note that Symbolize() is originally implemented to be used in
// signal handlers, hence it doesn't use malloc() and other unsafe
// operations. It should be both thread-safe and async-signal-safe.
//
// Implementation note:
//
// We don't use heaps but only use stacks. We want to reduce the
// stack consumption so that the symbolizer can run on small stacks.
//
// Here are some numbers collected with GCC 4.1.0 on x86:
// - sizeof(Elf32_Sym) = 16
// - sizeof(Elf32_Shdr) = 40
// - sizeof(Elf64_Sym) = 24
// - sizeof(Elf64_Shdr) = 64
//
// This implementation is intended to be async-signal-safe but uses some
// functions which are not guaranteed to be so, such as memchr() and
// memmove(). We assume they are async-signal-safe.
#include <dlfcn.h>
#include <elf.h>
#include <fcntl.h>
#include <link.h> // For ElfW() macro.
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <cinttypes>
#include <climits>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "absl/base/casts.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/low_level_alloc.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/port.h"
#include "absl/debugging/internal/demangle.h"
#include "absl/debugging/internal/vdso_support.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// Value of argv[0]. Used by MaybeInitializeObjFile().
static char *argv0_value = nullptr;
void InitializeSymbolizer(const char *argv0) {
if (argv0_value != nullptr) {
free(argv0_value);
argv0_value = nullptr;
}
if (argv0 != nullptr && argv0[0] != '\0') {
argv0_value = strdup(argv0);
}
}
namespace debugging_internal {
namespace {
// Re-runs fn until it doesn't cause EINTR.
#define NO_INTR(fn) \
do { \
} while ((fn) < 0 && errno == EINTR)
// On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable
// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.
#ifndef ELF_ST_BIND
#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)
#endif
#ifndef ELF_ST_TYPE
#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)
#endif
// Some platforms use a special .opd section to store function pointers.
const char kOpdSectionName[] = ".opd";
#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)
// Use opd section for function descriptors on these platforms, the function
// address is the first word of the descriptor.
enum { kPlatformUsesOPDSections = 1 };
#else // not PPC or IA64
enum { kPlatformUsesOPDSections = 0 };
#endif
// This works for PowerPC & IA64 only. A function descriptor consist of two
// pointers and the first one is the function's entry.
const size_t kFunctionDescriptorSize = sizeof(void *) * 2;
const int kMaxDecorators = 10; // Seems like a reasonable upper limit.
struct InstalledSymbolDecorator {
SymbolDecorator fn;
void *arg;
int ticket;
};
int g_num_decorators;
InstalledSymbolDecorator g_decorators[kMaxDecorators];
struct FileMappingHint {
const void *start;
const void *end;
uint64_t offset;
const char *filename;
};
// Protects g_decorators.
// We are using SpinLock and not a Mutex here, because we may be called
// from inside Mutex::Lock itself, and it prohibits recursive calls.
// This happens in e.g. base/stacktrace_syscall_unittest.
// Moreover, we are using only TryLock(), if the decorator list
// is being modified (is busy), we skip all decorators, and possibly
// loose some info. Sorry, that's the best we could do.
ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu(
absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
const int kMaxFileMappingHints = 8;
int g_num_file_mapping_hints;
FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];
// Protects g_file_mapping_hints.
ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu(
absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
// Async-signal-safe function to zero a buffer.
// memset() is not guaranteed to be async-signal-safe.
static void SafeMemZero(void* p, size_t size) {
unsigned char *c = static_cast<unsigned char *>(p);
while (size--) {
*c++ = 0;
}
}
struct ObjFile {
ObjFile()
: filename(nullptr),
start_addr(nullptr),
end_addr(nullptr),
offset(0),
fd(-1),
elf_type(-1) {
SafeMemZero(&elf_header, sizeof(elf_header));
}
char *filename;
const void *start_addr;
const void *end_addr;
uint64_t offset;
// The following fields are initialized on the first access to the
// object file.
int fd;
int elf_type;
ElfW(Ehdr) elf_header;
};
// Build 4-way associative cache for symbols. Within each cache line, symbols
// are replaced in LRU order.
enum {
ASSOCIATIVITY = 4,
};
struct SymbolCacheLine {
const void *pc[ASSOCIATIVITY];
char *name[ASSOCIATIVITY];
// age[i] is incremented when a line is accessed. it's reset to zero if the
// i'th entry is read.
uint32_t age[ASSOCIATIVITY];
};
// ---------------------------------------------------------------
// An async-signal-safe arena for LowLevelAlloc
static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;
static base_internal::LowLevelAlloc::Arena *SigSafeArena() {
return g_sig_safe_arena.load(std::memory_order_acquire);
}
static void InitSigSafeArena() {
if (SigSafeArena() == nullptr) {
base_internal::LowLevelAlloc::Arena *new_arena =
base_internal::LowLevelAlloc::NewArena(
base_internal::LowLevelAlloc::kAsyncSignalSafe);
base_internal::LowLevelAlloc::Arena *old_value = nullptr;
if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,
std::memory_order_release,
std::memory_order_relaxed)) {
// We lost a race to allocate an arena; deallocate.
base_internal::LowLevelAlloc::DeleteArena(new_arena);
}
}
}
// ---------------------------------------------------------------
// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.
class AddrMap {
public:
AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}
~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }
int Size() const { return size_; }
ObjFile *At(int i) { return &obj_[i]; }
ObjFile *Add();
void Clear();
private:
int size_; // count of valid elements (<= allocated_)
int allocated_; // count of allocated elements
ObjFile *obj_; // array of allocated_ elements
AddrMap(const AddrMap &) = delete;
AddrMap &operator=(const AddrMap &) = delete;
};
void AddrMap::Clear() {
for (int i = 0; i != size_; i++) {
At(i)->~ObjFile();
}
size_ = 0;
}
ObjFile *AddrMap::Add() {
if (size_ == allocated_) {
int new_allocated = allocated_ * 2 + 50;
ObjFile *new_obj_ =
static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(
new_allocated * sizeof(*new_obj_), SigSafeArena()));
if (obj_) {
memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));
base_internal::LowLevelAlloc::Free(obj_);
}
obj_ = new_obj_;
allocated_ = new_allocated;
}
return new (&obj_[size_++]) ObjFile;
}
// ---------------------------------------------------------------
enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };
class Symbolizer {
public:
Symbolizer();
~Symbolizer();
const char *GetSymbol(const void *const pc);
private:
char *CopyString(const char *s) {
int len = strlen(s);
char *dst = static_cast<char *>(
base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
ABSL_RAW_CHECK(dst != nullptr, "out of memory");
memcpy(dst, s, len + 1);
return dst;
}
ObjFile *FindObjFile(const void *const start,
size_t size) ABSL_ATTRIBUTE_NOINLINE;
static bool RegisterObjFile(const char *filename,
const void *const start_addr,
const void *const end_addr, uint64_t offset,
void *arg);
SymbolCacheLine *GetCacheLine(const void *const pc);
const char *FindSymbolInCache(const void *const pc);
const char *InsertSymbolInCache(const void *const pc, const char *name);
void AgeSymbols(SymbolCacheLine *line);
void ClearAddrMap();
FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,
const void *const pc,
const ptrdiff_t relocation,
char *out, int out_size,
char *tmp_buf, int tmp_buf_size);
enum {
SYMBOL_BUF_SIZE = 3072,
TMP_BUF_SIZE = 1024,
SYMBOL_CACHE_LINES = 128,
};
AddrMap addr_map_;
bool ok_;
bool addr_map_read_;
char symbol_buf_[SYMBOL_BUF_SIZE];
// tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)
// so we ensure that tmp_buf_ is properly aligned to store either.
alignas(16) char tmp_buf_[TMP_BUF_SIZE];
static_assert(alignof(ElfW(Shdr)) <= 16,
"alignment of tmp buf too small for Shdr");
static_assert(alignof(ElfW(Sym)) <= 16,
"alignment of tmp buf too small for Sym");
SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];
};
static std::atomic<Symbolizer *> g_cached_symbolizer;
} // namespace
static int SymbolizerSize() {
#if defined(__wasm__) || defined(__asmjs__)
int pagesize = getpagesize();
#else
int pagesize = sysconf(_SC_PAGESIZE);
#endif
return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;
}
// Return (and set null) g_cached_symbolized_state if it is not null.
// Otherwise return a new symbolizer.
static Symbolizer *AllocateSymbolizer() {
InitSigSafeArena();
Symbolizer *symbolizer =
g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);
if (symbolizer != nullptr) {
return symbolizer;
}
return new (base_internal::LowLevelAlloc::AllocWithArena(
SymbolizerSize(), SigSafeArena())) Symbolizer();
}
// Set g_cached_symbolize_state to s if it is null, otherwise
// delete s.
static void FreeSymbolizer(Symbolizer *s) {
Symbolizer *old_cached_symbolizer = nullptr;
if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,
std::memory_order_release,
std::memory_order_relaxed)) {
s->~Symbolizer();
base_internal::LowLevelAlloc::Free(s);
}
}
Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {
for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {
symbol_cache_line.pc[j] = nullptr;
symbol_cache_line.name[j] = nullptr;
symbol_cache_line.age[j] = 0;
}
}
}
Symbolizer::~Symbolizer() {
for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
for (char *s : symbol_cache_line.name) {
base_internal::LowLevelAlloc::Free(s);
}
}
ClearAddrMap();
}
// We don't use assert() since it's not guaranteed to be
// async-signal-safe. Instead we define a minimal assertion
// macro. So far, we don't need pretty printing for __FILE__, etc.
#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())
// Read up to "count" bytes from file descriptor "fd" into the buffer
// starting at "buf" while handling short reads and EINTR. On
// success, return the number of bytes read. Otherwise, return -1.
static ssize_t ReadPersistent(int fd, void *buf, size_t count) {
SAFE_ASSERT(fd >= 0);
SAFE_ASSERT(count <= SSIZE_MAX);
char *buf0 = reinterpret_cast<char *>(buf);
size_t num_bytes = 0;
while (num_bytes < count) {
ssize_t len;
NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
if (len < 0) { // There was an error other than EINTR.
ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
return -1;
}
if (len == 0) { // Reached EOF.
break;
}
num_bytes += len;
}
SAFE_ASSERT(num_bytes <= count);
return static_cast<ssize_t>(num_bytes);
}
// Read up to "count" bytes from "offset" in the file pointed by file
// descriptor "fd" into the buffer starting at "buf". On success,
// return the number of bytes read. Otherwise, return -1.
static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count,
const off_t offset) {
off_t off = lseek(fd, offset, SEEK_SET);
if (off == (off_t)-1) {
ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd,
static_cast<uintmax_t>(offset), errno);
return -1;
}
return ReadPersistent(fd, buf, count);
}
// Try reading exactly "count" bytes from "offset" bytes in a file
// pointed by "fd" into the buffer starting at "buf" while handling
// short reads and EINTR. On success, return true. Otherwise, return
// false.
static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count,
const off_t offset) {
ssize_t len = ReadFromOffset(fd, buf, count, offset);
return len >= 0 && static_cast<size_t>(len) == count;
}
// Returns elf_header.e_type if the file pointed by fd is an ELF binary.
static int FileGetElfType(const int fd) {
ElfW(Ehdr) elf_header;
if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
return -1;
}
if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
return -1;
}
return elf_header.e_type;
}
// Read the section headers in the given ELF binary, and if a section
// of the specified type is found, set the output to this section header
// and return true. Otherwise, return false.
// To keep stack consumption low, we would like this function to not get
// inlined.
static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(
const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type,
ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) {
ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);
const int buf_entries = tmp_buf_size / sizeof(buf[0]);
const int buf_bytes = buf_entries * sizeof(buf[0]);
for (int i = 0; i < sh_num;) {
const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);
const ssize_t num_bytes_to_read =
(buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;
const off_t offset = sh_offset + i * sizeof(buf[0]);
const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset);
if (len % sizeof(buf[0]) != 0) {
ABSL_RAW_LOG(
WARNING,
"Reading %zd bytes from offset %ju returned %zd which is not a "
"multiple of %zu.",
num_bytes_to_read, static_cast<uintmax_t>(offset), len,
sizeof(buf[0]));
return false;
}
const ssize_t num_headers_in_buf = len / sizeof(buf[0]);
SAFE_ASSERT(num_headers_in_buf <= buf_entries);
for (int j = 0; j < num_headers_in_buf; ++j) {
if (buf[j].sh_type == type) {
*out = buf[j];
return true;
}
}
i += num_headers_in_buf;
}
return false;
}
// There is no particular reason to limit section name to 63 characters,
// but there has (as yet) been no need for anything longer either.
const int kMaxSectionNameLen = 64;
bool ForEachSection(int fd,
const std::function<bool(const std::string &name,
const ElfW(Shdr) &)> &callback) {
ElfW(Ehdr) elf_header;
if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
return false;
}
ElfW(Shdr) shstrtab;
off_t shstrtab_offset =
(elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
return false;
}
for (int i = 0; i < elf_header.e_shnum; ++i) {
ElfW(Shdr) out;
off_t section_header_offset =
(elf_header.e_shoff + elf_header.e_shentsize * i);
if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) {
return false;
}
off_t name_offset = shstrtab.sh_offset + out.sh_name;
char header_name[kMaxSectionNameLen + 1];
ssize_t n_read =
ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset);
if (n_read == -1) {
return false;
} else if (n_read > kMaxSectionNameLen) {
// Long read?
return false;
}
header_name[n_read] = '\0';
std::string name(header_name);
if (!callback(name, out)) {
break;
}
}
return true;
}
// name_len should include terminating '\0'.
bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
ElfW(Shdr) * out) {
char header_name[kMaxSectionNameLen];
if (sizeof(header_name) < name_len) {
ABSL_RAW_LOG(WARNING,
"Section name '%s' is too long (%zu); "
"section will not be found (even if present).",
name, name_len);
// No point in even trying.
return false;
}
ElfW(Ehdr) elf_header;
if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
return false;
}
ElfW(Shdr) shstrtab;
off_t shstrtab_offset =
(elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
return false;
}
for (int i = 0; i < elf_header.e_shnum; ++i) {
off_t section_header_offset =
(elf_header.e_shoff + elf_header.e_shentsize * i);
if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {
return false;
}
off_t name_offset = shstrtab.sh_offset + out->sh_name;
ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);
if (n_read < 0) {
return false;
} else if (static_cast<size_t>(n_read) != name_len) {
// Short read -- name could be at end of file.
continue;
}
if (memcmp(header_name, name, name_len) == 0) {
return true;
}
}
return false;
}
// Compare symbols at in the same address.
// Return true if we should pick symbol1.
static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,
const ElfW(Sym) & symbol2) {
// If one of the symbols is weak and the other is not, pick the one
// this is not a weak symbol.
char bind1 = ELF_ST_BIND(symbol1.st_info);
char bind2 = ELF_ST_BIND(symbol1.st_info);
if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;
if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;
// If one of the symbols has zero size and the other is not, pick the
// one that has non-zero size.
if (symbol1.st_size != 0 && symbol2.st_size == 0) {
return true;
}
if (symbol1.st_size == 0 && symbol2.st_size != 0) {
return false;
}
// If one of the symbols has no type and the other is not, pick the
// one that has a type.
char type1 = ELF_ST_TYPE(symbol1.st_info);
char type2 = ELF_ST_TYPE(symbol1.st_info);
if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {
return true;
}
if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {
return false;
}
// Pick the first one, if we still cannot decide.
return true;
}
// Return true if an address is inside a section.
static bool InSection(const void *address, const ElfW(Shdr) * section) {
const char *start = reinterpret_cast<const char *>(section->sh_addr);
size_t size = static_cast<size_t>(section->sh_size);
return start <= address && address < (start + size);
}
static const char *ComputeOffset(const char *base, ptrdiff_t offset) {
// Note: cast to uintptr_t to avoid undefined behavior when base evaluates to
// zero and offset is non-zero.
return reinterpret_cast<const char *>(
reinterpret_cast<uintptr_t>(base) + offset);
}
// Read a symbol table and look for the symbol containing the
// pc. Iterate over symbols in a symbol table and look for the symbol
// containing "pc". If the symbol is found, and its name fits in
// out_size, the name is written into out and SYMBOL_FOUND is returned.
// If the name does not fit, truncated name is written into out,
// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.
// If the symbol is not found, SYMBOL_NOT_FOUND is returned;
// To keep stack consumption low, we would like this function to not get
// inlined.
static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(
const void *const pc, const int fd, char *out, int out_size,
ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,
const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) {
if (symtab == nullptr) {
return SYMBOL_NOT_FOUND;
}
// Read multiple symbols at once to save read() calls.
ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);
const int buf_entries = tmp_buf_size / sizeof(buf[0]);
const int num_symbols = symtab->sh_size / symtab->sh_entsize;
// On platforms using an .opd section (PowerPC & IA64), a function symbol
// has the address of a function descriptor, which contains the real
// starting address. However, we do not always want to use the real
// starting address because we sometimes want to symbolize a function
// pointer into the .opd section, e.g. FindSymbol(&foo,...).
const bool pc_in_opd =
kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd);
const bool deref_function_descriptor_pointer =
kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;
ElfW(Sym) best_match;
SafeMemZero(&best_match, sizeof(best_match));
bool found_match = false;
for (int i = 0; i < num_symbols;) {
off_t offset = symtab->sh_offset + i * symtab->sh_entsize;
const int num_remaining_symbols = num_symbols - i;
const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries);
const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);
const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset);
SAFE_ASSERT(len % sizeof(buf[0]) == 0);
const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);
SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);
for (int j = 0; j < num_symbols_in_buf; ++j) {
const ElfW(Sym) &symbol = buf[j];
// For a DSO, a symbol address is relocated by the loading address.
// We keep the original address for opd redirection below.
const char *const original_start_address =
reinterpret_cast<const char *>(symbol.st_value);
const char *start_address =
ComputeOffset(original_start_address, relocation);
if (deref_function_descriptor_pointer &&
InSection(original_start_address, opd)) {
// The opd section is mapped into memory. Just dereference
// start_address to get the first double word, which points to the
// function entry.
start_address = *reinterpret_cast<const char *const *>(start_address);
}
// If pc is inside the .opd section, it points to a function descriptor.
const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;
const void *const end_address = ComputeOffset(start_address, size);
if (symbol.st_value != 0 && // Skip null value symbols.
symbol.st_shndx != 0 && // Skip undefined symbols.
#ifdef STT_TLS
ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data.
#endif // STT_TLS
((start_address <= pc && pc < end_address) ||
(start_address == pc && pc == end_address))) {
if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {
found_match = true;
best_match = symbol;
}
}
}
i += num_symbols_in_buf;
}
if (found_match) {
const size_t off = strtab->sh_offset + best_match.st_name;
const ssize_t n_read = ReadFromOffset(fd, out, out_size, off);
if (n_read <= 0) {
// This should never happen.
ABSL_RAW_LOG(WARNING,
"Unable to read from fd %d at offset %zu: n_read = %zd", fd,
off, n_read);
return SYMBOL_NOT_FOUND;
}
ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data.");
// strtab->sh_offset points into .strtab-like section that contains
// NUL-terminated strings: '\0foo\0barbaz\0...".
//
// sh_offset+st_name points to the start of symbol name, but we don't know
// how long the symbol is, so we try to read as much as we have space for,
// and usually over-read (i.e. there is a NUL somewhere before n_read).
if (memchr(out, '\0', n_read) == nullptr) {
// Either out_size was too small (n_read == out_size and no NUL), or
// we tried to read past the EOF (n_read < out_size) and .strtab is
// corrupt (missing terminating NUL; should never happen for valid ELF).
out[n_read - 1] = '\0';
return SYMBOL_TRUNCATED;
}
return SYMBOL_FOUND;
}
return SYMBOL_NOT_FOUND;
}
// Get the symbol name of "pc" from the file pointed by "fd". Process
// both regular and dynamic symbol tables if necessary.
// See FindSymbol() comment for description of return value.
FindSymbolResult Symbolizer::GetSymbolFromObjectFile(
const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,
char *out, int out_size, char *tmp_buf, int tmp_buf_size) {
ElfW(Shdr) symtab;
ElfW(Shdr) strtab;
ElfW(Shdr) opd;
ElfW(Shdr) *opd_ptr = nullptr;
// On platforms using an .opd sections for function descriptor, read
// the section header. The .opd section is in data segment and should be
// loaded but we check that it is mapped just to be extra careful.
if (kPlatformUsesOPDSections) {
if (GetSectionHeaderByName(obj.fd, kOpdSectionName,
sizeof(kOpdSectionName) - 1, &opd) &&
FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,
opd.sh_size) != nullptr) {
opd_ptr = &opd;
} else {
return SYMBOL_NOT_FOUND;
}
}
// Consult a regular symbol table, then fall back to the dynamic symbol table.
for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) {
if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,
obj.elf_header.e_shoff, symbol_table_type,
&symtab, tmp_buf, tmp_buf_size)) {
continue;
}
if (!ReadFromOffsetExact(
obj.fd, &strtab, sizeof(strtab),
obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {
continue;
}
const FindSymbolResult rc =
FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,
opd_ptr, tmp_buf, tmp_buf_size);
if (rc != SYMBOL_NOT_FOUND) {
return rc;
}
}
return SYMBOL_NOT_FOUND;
}
namespace {
// Thin wrapper around a file descriptor so that the file descriptor
// gets closed for sure.
class FileDescriptor {
public:
explicit FileDescriptor(int fd) : fd_(fd) {}
FileDescriptor(const FileDescriptor &) = delete;
FileDescriptor &operator=(const FileDescriptor &) = delete;
~FileDescriptor() {
if (fd_ >= 0) {
NO_INTR(close(fd_));
}
}
int get() const { return fd_; }
private:
const int fd_;
};
// Helper class for reading lines from file.
//
// Note: we don't use ProcMapsIterator since the object is big (it has
// a 5k array member) and uses async-unsafe functions such as sscanf()
// and snprintf().
class LineReader {
public:
explicit LineReader(int fd, char *buf, int buf_len)
: fd_(fd),
buf_len_(buf_len),
buf_(buf),
bol_(buf),
eol_(buf),
eod_(buf) {}
LineReader(const LineReader &) = delete;
LineReader &operator=(const LineReader &) = delete;
// Read '\n'-terminated line from file. On success, modify "bol"
// and "eol", then return true. Otherwise, return false.
//
// Note: if the last line doesn't end with '\n', the line will be
// dropped. It's an intentional behavior to make the code simple.
bool ReadLine(const char **bol, const char **eol) {
if (BufferIsEmpty()) { // First time.
const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
if (num_bytes <= 0) { // EOF or error.
return false;
}
eod_ = buf_ + num_bytes;
bol_ = buf_;
} else {
bol_ = eol_ + 1; // Advance to the next line in the buffer.
SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_".
if (!HasCompleteLine()) {
const int incomplete_line_length = eod_ - bol_;
// Move the trailing incomplete line to the beginning.
memmove(buf_, bol_, incomplete_line_length);
// Read text from file and append it.
char *const append_pos = buf_ + incomplete_line_length;
const int capacity_left = buf_len_ - incomplete_line_length;
const ssize_t num_bytes =
ReadPersistent(fd_, append_pos, capacity_left);
if (num_bytes <= 0) { // EOF or error.
return false;
}
eod_ = append_pos + num_bytes;
bol_ = buf_;
}
}
eol_ = FindLineFeed();
if (eol_ == nullptr) { // '\n' not found. Malformed line.
return false;
}
*eol_ = '\0'; // Replace '\n' with '\0'.
*bol = bol_;
*eol = eol_;
return true;
}
private:
char *FindLineFeed() const {
return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));
}
bool BufferIsEmpty() const { return buf_ == eod_; }
bool HasCompleteLine() const {
return !BufferIsEmpty() && FindLineFeed() != nullptr;
}
const int fd_;
const int buf_len_;
char *const buf_;
char *bol_;
char *eol_;
const char *eod_; // End of data in "buf_".
};
} // namespace
// Place the hex number read from "start" into "*hex". The pointer to
// the first non-hex character or "end" is returned.
static const char *GetHex(const char *start, const char *end,
uint64_t *const value) {
uint64_t hex = 0;
const char *p;
for (p = start; p < end; ++p) {
int ch = *p;
if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||
(ch >= 'a' && ch <= 'f')) {
hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
} else { // Encountered the first non-hex character.
break;
}
}
SAFE_ASSERT(p <= end);
*value = hex;
return p;
}
static const char *GetHex(const char *start, const char *end,
const void **const addr) {
uint64_t hex = 0;
const char *p = GetHex(start, end, &hex);
*addr = reinterpret_cast<void *>(hex);
return p;
}
// Normally we are only interested in "r?x" maps.
// On the PowerPC, function pointers point to descriptors in the .opd
// section. The descriptors themselves are not executable code, so
// we need to relax the check below to "r??".
static bool ShouldUseMapping(const char *const flags) {
return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x');
}
// Read /proc/self/maps and run "callback" for each mmapped file found. If
// "callback" returns false, stop scanning and return true. Else continue
// scanning /proc/self/maps. Return true if no parse error is found.
static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(
bool (*callback)(const char *filename, const void *const start_addr,
const void *const end_addr, uint64_t offset, void *arg),
void *arg, void *tmp_buf, int tmp_buf_size) {
// Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter
// requires kernel to stop all threads, and is significantly slower when there
// are 1000s of threads.
char maps_path[80];
snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());
int maps_fd;
NO_INTR(maps_fd = open(maps_path, O_RDONLY));
FileDescriptor wrapped_maps_fd(maps_fd);
if (wrapped_maps_fd.get() < 0) {
ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);
return false;
}
// Iterate over maps and look for the map containing the pc. Then
// look into the symbol tables inside.
LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),
tmp_buf_size);
while (true) {
const char *cursor;
const char *eol;
if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line.
break;
}
const char *line = cursor;
const void *start_address;
// Start parsing line in /proc/self/maps. Here is an example:
//
// 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat
//
// We want start address (08048000), end address (0804c000), flags
// (r-xp) and file name (/bin/cat).
// Read start address.
cursor = GetHex(cursor, eol, &start_address);
if (cursor == eol || *cursor != '-') {
ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
return false;
}
++cursor; // Skip '-'.
// Read end address.
const void *end_address;
cursor = GetHex(cursor, eol, &end_address);
if (cursor == eol || *cursor != ' ') {
ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
return false;
}
++cursor; // Skip ' '.
// Read flags. Skip flags until we encounter a space or eol.
const char *const flags_start = cursor;
while (cursor < eol && *cursor != ' ') {
++cursor;
}
// We expect at least four letters for flags (ex. "r-xp").
if (cursor == eol || cursor < flags_start + 4) {
ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);
return false;
}
// Check flags.
if (!ShouldUseMapping(flags_start)) {
continue; // We skip this map.
}
++cursor; // Skip ' '.
// Read file offset.
uint64_t offset;
cursor = GetHex(cursor, eol, &offset);
++cursor; // Skip ' '.
// Skip to file name. "cursor" now points to dev. We need to skip at least
// two spaces for dev and inode.
int num_spaces = 0;
while (cursor < eol) {
if (*cursor == ' ') {
++num_spaces;
} else if (num_spaces >= 2) {
// The first non-space character after skipping two spaces
// is the beginning of the file name.
break;
}
++cursor;
}
// Check whether this entry corresponds to our hint table for the true
// filename.
bool hinted =
GetFileMappingHint(&start_address, &end_address, &offset, &cursor);
if (!hinted && (cursor == eol || cursor[0] == '[')) {
// not an object file, typically [vdso] or [vsyscall]
continue;
}
if (!callback(cursor, start_address, end_address, offset, arg)) break;
}
return true;
}
// Find the objfile mapped in address region containing [addr, addr + len).
ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {
for (int i = 0; i < 2; ++i) {
if (!ok_) return nullptr;
// Read /proc/self/maps if necessary
if (!addr_map_read_) {
addr_map_read_ = true;
if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {
ok_ = false;
return nullptr;
}
}
int lo = 0;
int hi = addr_map_.Size();
while (lo < hi) {
int mid = (lo + hi) / 2;
if (addr < addr_map_.At(mid)->end_addr) {
hi = mid;
} else {
lo = mid + 1;
}
}
if (lo != addr_map_.Size()) {
ObjFile *obj = addr_map_.At(lo);
SAFE_ASSERT(obj->end_addr > addr);
if (addr >= obj->start_addr &&
reinterpret_cast<const char *>(addr) + len <= obj->end_addr)
return obj;
}
// The address mapping may have changed since it was last read. Retry.
ClearAddrMap();
}
return nullptr;
}
void Symbolizer::ClearAddrMap() {
for (int i = 0; i != addr_map_.Size(); i++) {
ObjFile *o = addr_map_.At(i);
base_internal::LowLevelAlloc::Free(o->filename);
if (o->fd >= 0) {
NO_INTR(close(o->fd));
}
}
addr_map_.Clear();
addr_map_read_ = false;
}
// Callback for ReadAddrMap to register objfiles in an in-memory table.
bool Symbolizer::RegisterObjFile(const char *filename,
const void *const start_addr,
const void *const end_addr, uint64_t offset,
void *arg) {
Symbolizer *impl = static_cast<Symbolizer *>(arg);
// Files are supposed to be added in the increasing address order. Make
// sure that's the case.
int addr_map_size = impl->addr_map_.Size();
if (addr_map_size != 0) {
ObjFile *old = impl->addr_map_.At(addr_map_size - 1);
if (old->end_addr > end_addr) {
ABSL_RAW_LOG(ERROR,
"Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR
": %s",
reinterpret_cast<uintptr_t>(end_addr), filename,
reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
return true;
} else if (old->end_addr == end_addr) {
// The same entry appears twice. This sometimes happens for [vdso].
if (old->start_addr != start_addr ||
strcmp(old->filename, filename) != 0) {
ABSL_RAW_LOG(ERROR,
"Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",
reinterpret_cast<uintptr_t>(end_addr), filename,
reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
}
return true;
}
}
ObjFile *obj = impl->addr_map_.Add();
obj->filename = impl->CopyString(filename);
obj->start_addr = start_addr;
obj->end_addr = end_addr;
obj->offset = offset;
obj->elf_type = -1; // filled on demand
obj->fd = -1; // opened on demand
return true;
}
// This function wraps the Demangle function to provide an interface
// where the input symbol is demangled in-place.
// To keep stack consumption low, we would like this function to not
// get inlined.
static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size,
char *tmp_buf,
int tmp_buf_size) {
if (Demangle(out, tmp_buf, tmp_buf_size)) {
// Demangling succeeded. Copy to out if the space allows.
int len = strlen(tmp_buf);
if (len + 1 <= out_size) { // +1 for '\0'.
SAFE_ASSERT(len < tmp_buf_size);
memmove(out, tmp_buf, len + 1);
}
}
}
SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {
uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);
pc0 >>= 3; // drop the low 3 bits
// Shuffle bits.
pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);
return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];
}
void Symbolizer::AgeSymbols(SymbolCacheLine *line) {
for (uint32_t &age : line->age) {
++age;
}
}
const char *Symbolizer::FindSymbolInCache(const void *const pc) {
if (pc == nullptr) return nullptr;
SymbolCacheLine *line = GetCacheLine(pc);
for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
if (line->pc[i] == pc) {
AgeSymbols(line);
line->age[i] = 0;
return line->name[i];
}
}
return nullptr;
}
const char *Symbolizer::InsertSymbolInCache(const void *const pc,
const char *name) {
SAFE_ASSERT(pc != nullptr);
SymbolCacheLine *line = GetCacheLine(pc);
uint32_t max_age = 0;
int oldest_index = -1;
for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
if (line->pc[i] == nullptr) {
AgeSymbols(line);
line->pc[i] = pc;
line->name[i] = CopyString(name);
line->age[i] = 0;
return line->name[i];
}
if (line->age[i] >= max_age) {
max_age = line->age[i];
oldest_index = i;
}
}
AgeSymbols(line);
ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache");
base_internal::LowLevelAlloc::Free(line->name[oldest_index]);
line->pc[oldest_index] = pc;
line->name[oldest_index] = CopyString(name);
line->age[oldest_index] = 0;
return line->name[oldest_index];
}
static void MaybeOpenFdFromSelfExe(ObjFile *obj) {
if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {
return;
}
int fd = open("/proc/self/exe", O_RDONLY);
if (fd == -1) {
return;
}
// Verify that contents of /proc/self/exe matches in-memory image of
// the binary. This can fail if the "deleted" binary is in fact not
// the main executable, or for binaries that have the first PT_LOAD
// segment smaller than 4K. We do it in four steps so that the
// buffer is smaller and we don't consume too much stack space.
const char *mem = reinterpret_cast<const char *>(obj->start_addr);
for (int i = 0; i < 4; ++i) {
char buf[1024];
ssize_t n = read(fd, buf, sizeof(buf));
if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {
close(fd);
return;
}
mem += sizeof(buf);
}
obj->fd = fd;
}
static bool MaybeInitializeObjFile(ObjFile *obj) {
if (obj->fd < 0) {
obj->fd = open(obj->filename, O_RDONLY);
if (obj->fd < 0) {
// Getting /proc/self/exe here means that we were hinted.
if (strcmp(obj->filename, "/proc/self/exe") == 0) {
// /proc/self/exe may be inaccessible (due to setuid, etc.), so try
// accessing the binary via argv0.
if (argv0_value != nullptr) {
obj->fd = open(argv0_value, O_RDONLY);
}
} else {
MaybeOpenFdFromSelfExe(obj);
}
}
if (obj->fd < 0) {
ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);
return false;
}
obj->elf_type = FileGetElfType(obj->fd);
if (obj->elf_type < 0) {
ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,
obj->elf_type);
return false;
}
if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header),
0)) {
ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);
return false;
}
}
return true;
}
// The implementation of our symbolization routine. If it
// successfully finds the symbol containing "pc" and obtains the
// symbol name, returns pointer to that symbol. Otherwise, returns nullptr.
// If any symbol decorators have been installed via InstallSymbolDecorator(),
// they are called here as well.
// To keep stack consumption low, we would like this function to not
// get inlined.
const char *Symbolizer::GetSymbol(const void *const pc) {
const char *entry = FindSymbolInCache(pc);
if (entry != nullptr) {
return entry;
}
symbol_buf_[0] = '\0';
ObjFile *const obj = FindObjFile(pc, 1);
ptrdiff_t relocation = 0;
int fd = -1;
if (obj != nullptr) {
if (MaybeInitializeObjFile(obj)) {
if (obj->elf_type == ET_DYN &&
reinterpret_cast<uint64_t>(obj->start_addr) >= obj->offset) {
// This object was relocated.
//
// For obj->offset > 0, adjust the relocation since a mapping at offset
// X in the file will have a start address of [true relocation]+X.
relocation = reinterpret_cast<ptrdiff_t>(obj->start_addr) - obj->offset;
}
fd = obj->fd;
}
if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,
sizeof(symbol_buf_), tmp_buf_,
sizeof(tmp_buf_)) == SYMBOL_FOUND) {
// Only try to demangle the symbol name if it fit into symbol_buf_.
DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,
sizeof(tmp_buf_));
}
} else {
#if ABSL_HAVE_VDSO_SUPPORT
VDSOSupport vdso;
if (vdso.IsPresent()) {
VDSOSupport::SymbolInfo symbol_info;
if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {
// All VDSO symbols are known to be short.
size_t len = strlen(symbol_info.name);
ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),
"VDSO symbol unexpectedly long");
memcpy(symbol_buf_, symbol_info.name, len + 1);
}
}
#endif
}
if (g_decorators_mu.TryLock()) {
if (g_num_decorators > 0) {
SymbolDecoratorArgs decorator_args = {
pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_),
tmp_buf_, sizeof(tmp_buf_), nullptr};
for (int i = 0; i < g_num_decorators; ++i) {
decorator_args.arg = g_decorators[i].arg;
g_decorators[i].fn(&decorator_args);
}
}
g_decorators_mu.Unlock();
}
if (symbol_buf_[0] == '\0') {
return nullptr;
}
symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia.
return InsertSymbolInCache(pc, symbol_buf_);
}
bool RemoveAllSymbolDecorators(void) {
if (!g_decorators_mu.TryLock()) {
// Someone else is using decorators. Get out.
return false;
}
g_num_decorators = 0;
g_decorators_mu.Unlock();
return true;
}
bool RemoveSymbolDecorator(int ticket) {
if (!g_decorators_mu.TryLock()) {
// Someone else is using decorators. Get out.
return false;
}
for (int i = 0; i < g_num_decorators; ++i) {
if (g_decorators[i].ticket == ticket) {
while (i < g_num_decorators - 1) {
g_decorators[i] = g_decorators[i + 1];
++i;
}
g_num_decorators = i;
break;
}
}
g_decorators_mu.Unlock();
return true; // Decorator is known to be removed.
}
int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {
static int ticket = 0;
if (!g_decorators_mu.TryLock()) {
// Someone else is using decorators. Get out.
return false;
}
int ret = ticket;
if (g_num_decorators >= kMaxDecorators) {
ret = -1;
} else {
g_decorators[g_num_decorators] = {decorator, arg, ticket++};
++g_num_decorators;
}
g_decorators_mu.Unlock();
return ret;
}
bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,
const char *filename) {
SAFE_ASSERT(start <= end);
SAFE_ASSERT(filename != nullptr);
InitSigSafeArena();
if (!g_file_mapping_mu.TryLock()) {
return false;
}
bool ret = true;
if (g_num_file_mapping_hints >= kMaxFileMappingHints) {
ret = false;
} else {
// TODO(ckennelly): Move this into a string copy routine.
int len = strlen(filename);
char *dst = static_cast<char *>(
base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
ABSL_RAW_CHECK(dst != nullptr, "out of memory");
memcpy(dst, filename, len + 1);
auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];
hint.start = start;
hint.end = end;
hint.offset = offset;
hint.filename = dst;
}
g_file_mapping_mu.Unlock();
return ret;
}
bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,
const char **filename) {
if (!g_file_mapping_mu.TryLock()) {
return false;
}
bool found = false;
for (int i = 0; i < g_num_file_mapping_hints; i++) {
if (g_file_mapping_hints[i].start <= *start &&
*end <= g_file_mapping_hints[i].end) {
// We assume that the start_address for the mapping is the base
// address of the ELF section, but when [start_address,end_address) is
// not strictly equal to [hint.start, hint.end), that assumption is
// invalid.
//
// This uses the hint's start address (even though hint.start is not
// necessarily equal to start_address) to ensure the correct
// relocation is computed later.
*start = g_file_mapping_hints[i].start;
*end = g_file_mapping_hints[i].end;
*offset = g_file_mapping_hints[i].offset;
*filename = g_file_mapping_hints[i].filename;
found = true;
break;
}
}
g_file_mapping_mu.Unlock();
return found;
}
} // namespace debugging_internal
bool Symbolize(const void *pc, char *out, int out_size) {
// Symbolization is very slow under tsan.
ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
SAFE_ASSERT(out_size >= 0);
debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();
const char *name = s->GetSymbol(pc);
bool ok = false;
if (name != nullptr && out_size > 0) {
strncpy(out, name, out_size);
ok = true;
if (out[out_size - 1] != '\0') {
// strncpy() does not '\0' terminate when it truncates. Do so, with
// trailing ellipsis.
static constexpr char kEllipsis[] = "...";
int ellipsis_size =
std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1);
memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size);
out[out_size - 1] = '\0';
}
}
debugging_internal::FreeSymbolizer(s);
ANNOTATE_IGNORE_READS_AND_WRITES_END();
return ok;
}
ABSL_NAMESPACE_END
} // namespace absl