Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

419 lines
13 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/distribution_test_util.h"
#include <cassert>
#include <cmath>
#include <string>
#include <vector>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
namespace {
#if defined(__EMSCRIPTEN__)
// Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
inline double fma(double x, double y, double z) { return (x * y) + z; }
#endif
} // namespace
DistributionMoments ComputeDistributionMoments(
absl::Span<const double> data_points) {
DistributionMoments result;
// Compute m1
for (double x : data_points) {
result.n++;
result.mean += x;
}
result.mean /= static_cast<double>(result.n);
// Compute m2, m3, m4
for (double x : data_points) {
double v = x - result.mean;
result.variance += v * v;
result.skewness += v * v * v;
result.kurtosis += v * v * v * v;
}
result.variance /= static_cast<double>(result.n - 1);
result.skewness /= static_cast<double>(result.n);
result.skewness /= std::pow(result.variance, 1.5);
result.kurtosis /= static_cast<double>(result.n);
result.kurtosis /= std::pow(result.variance, 2.0);
return result;
// When validating the min/max count, the following confidence intervals may
// be of use:
// 3.291 * stddev = 99.9% CI
// 2.576 * stddev = 99% CI
// 1.96 * stddev = 95% CI
// 1.65 * stddev = 90% CI
}
std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
moments.mean, std::sqrt(moments.variance),
moments.skewness, moments.kurtosis);
}
double InverseNormalSurvival(double x) {
// inv_sf(u) = -sqrt(2) * erfinv(2u-1)
static constexpr double kSqrt2 = 1.4142135623730950488;
return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);
}
bool Near(absl::string_view msg, double actual, double expected, double bound) {
assert(bound > 0.0);
double delta = fabs(expected - actual);
if (delta < bound) {
return true;
}
std::string formatted = absl::StrCat(
msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
return false;
}
// TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try
// to use std::beta(). As of this writing P0226R1 is not implemented
// in libc++: http://libcxx.llvm.org/cxx1z_status.html
double beta(double p, double q) {
// Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)
double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
return std::exp(lbeta);
}
// Approximation to inverse of the Error Function in double precision.
// (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
double erfinv(double x) {
#if !defined(__EMSCRIPTEN__)
using std::fma;
#endif
double w = 0.0;
double p = 0.0;
w = -std::log((1.0 - x) * (1.0 + x));
if (w < 6.250000) {
w = w - 3.125000;
p = -3.6444120640178196996e-21;
p = fma(p, w, -1.685059138182016589e-19);
p = fma(p, w, 1.2858480715256400167e-18);
p = fma(p, w, 1.115787767802518096e-17);
p = fma(p, w, -1.333171662854620906e-16);
p = fma(p, w, 2.0972767875968561637e-17);
p = fma(p, w, 6.6376381343583238325e-15);
p = fma(p, w, -4.0545662729752068639e-14);
p = fma(p, w, -8.1519341976054721522e-14);
p = fma(p, w, 2.6335093153082322977e-12);
p = fma(p, w, -1.2975133253453532498e-11);
p = fma(p, w, -5.4154120542946279317e-11);
p = fma(p, w, 1.051212273321532285e-09);
p = fma(p, w, -4.1126339803469836976e-09);
p = fma(p, w, -2.9070369957882005086e-08);
p = fma(p, w, 4.2347877827932403518e-07);
p = fma(p, w, -1.3654692000834678645e-06);
p = fma(p, w, -1.3882523362786468719e-05);
p = fma(p, w, 0.0001867342080340571352);
p = fma(p, w, -0.00074070253416626697512);
p = fma(p, w, -0.0060336708714301490533);
p = fma(p, w, 0.24015818242558961693);
p = fma(p, w, 1.6536545626831027356);
} else if (w < 16.000000) {
w = std::sqrt(w) - 3.250000;
p = 2.2137376921775787049e-09;
p = fma(p, w, 9.0756561938885390979e-08);
p = fma(p, w, -2.7517406297064545428e-07);
p = fma(p, w, 1.8239629214389227755e-08);
p = fma(p, w, 1.5027403968909827627e-06);
p = fma(p, w, -4.013867526981545969e-06);
p = fma(p, w, 2.9234449089955446044e-06);
p = fma(p, w, 1.2475304481671778723e-05);
p = fma(p, w, -4.7318229009055733981e-05);
p = fma(p, w, 6.8284851459573175448e-05);
p = fma(p, w, 2.4031110387097893999e-05);
p = fma(p, w, -0.0003550375203628474796);
p = fma(p, w, 0.00095328937973738049703);
p = fma(p, w, -0.0016882755560235047313);
p = fma(p, w, 0.0024914420961078508066);
p = fma(p, w, -0.0037512085075692412107);
p = fma(p, w, 0.005370914553590063617);
p = fma(p, w, 1.0052589676941592334);
p = fma(p, w, 3.0838856104922207635);
} else {
w = std::sqrt(w) - 5.000000;
p = -2.7109920616438573243e-11;
p = fma(p, w, -2.5556418169965252055e-10);
p = fma(p, w, 1.5076572693500548083e-09);
p = fma(p, w, -3.7894654401267369937e-09);
p = fma(p, w, 7.6157012080783393804e-09);
p = fma(p, w, -1.4960026627149240478e-08);
p = fma(p, w, 2.9147953450901080826e-08);
p = fma(p, w, -6.7711997758452339498e-08);
p = fma(p, w, 2.2900482228026654717e-07);
p = fma(p, w, -9.9298272942317002539e-07);
p = fma(p, w, 4.5260625972231537039e-06);
p = fma(p, w, -1.9681778105531670567e-05);
p = fma(p, w, 7.5995277030017761139e-05);
p = fma(p, w, -0.00021503011930044477347);
p = fma(p, w, -0.00013871931833623122026);
p = fma(p, w, 1.0103004648645343977);
p = fma(p, w, 4.8499064014085844221);
}
return p * x;
}
namespace {
// Direct implementation of AS63, BETAIN()
// https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.
//
// BETAIN(x, p, q, beta)
// x: the value of the upper limit x.
// p: the value of the parameter p.
// q: the value of the parameter q.
// beta: the value of ln B(p, q)
//
double BetaIncompleteImpl(const double x, const double p, const double q,
const double beta) {
if (p < (p + q) * x) {
// Incomplete beta function is symmetrical, so return the complement.
return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
}
double psq = p + q;
const double kErr = 1e-14;
const double xc = 1. - x;
const double pre =
std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
double term = 1.;
double ai = 1.;
double result = 1.;
int ns = static_cast<int>(q + xc * psq);
// Use the soper reduction forumla.
double rx = (ns == 0) ? x : x / xc;
double temp = q - ai;
for (;;) {
term = term * temp * rx / (p + ai);
result = result + term;
temp = std::fabs(term);
if (temp < kErr && temp < kErr * result) {
return result * pre;
}
ai = ai + 1.;
--ns;
if (ns >= 0) {
temp = q - ai;
if (ns == 0) {
rx = x;
}
} else {
temp = psq;
psq = psq + 1.;
}
}
// NOTE: See also TOMS Alogrithm 708.
// http://www.netlib.org/toms/index.html
//
// NOTE: The NWSC library also includes BRATIO / ISUBX (p87)
// https://archive.org/details/DTIC_ADA261511/page/n75
}
// Direct implementation of AS109, XINBTA(p, q, beta, alpha)
// https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents
// https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents
//
// XINBTA(p, q, beta, alhpa)
// p: the value of the parameter p.
// q: the value of the parameter q.
// beta: the value of ln B(p, q)
// alpha: the value of the lower tail area.
//
double BetaIncompleteInvImpl(const double p, const double q, const double beta,
const double alpha) {
if (alpha < 0.5) {
// Inverse Incomplete beta function is symmetrical, return the complement.
return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
}
const double kErr = 1e-14;
double value = kErr;
// Compute the initial estimate.
{
double r = std::sqrt(-std::log(alpha * alpha));
double y =
r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
if (p > 1. && q > 1.) {
r = (y * y - 3.) / 6.;
double s = 1. / (p + p - 1.);
double t = 1. / (q + q - 1.);
double h = 2. / s + t;
double w =
y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
value = p / (p + q * std::exp(w + w));
} else {
r = q + q;
double t = 1.0 / (9. * q);
double u = 1.0 - t + y * std::sqrt(t);
t = r * (u * u * u);
if (t <= 0) {
value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
} else {
t = (4.0 * p + r - 2.0) / t;
if (t <= 1) {
value = std::exp((std::log(alpha * p) + beta) / p);
} else {
value = 1.0 - 2.0 / (t + 1.0);
}
}
}
}
// Solve for x using a modified newton-raphson method using the function
// BetaIncomplete.
{
value = std::max(value, kErr);
value = std::min(value, 1.0 - kErr);
const double r = 1.0 - p;
const double t = 1.0 - q;
double y;
double yprev = 0;
double sq = 1;
double prev = 1;
for (;;) {
if (value < 0 || value > 1.0) {
// Error case; value went infinite.
return std::numeric_limits<double>::infinity();
} else if (value == 0 || value == 1) {
y = value;
} else {
y = BetaIncompleteImpl(value, p, q, beta);
if (!std::isfinite(y)) {
return y;
}
}
y = (y - alpha) *
std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
if (y * yprev <= 0) {
prev = std::max(sq, std::numeric_limits<double>::min());
}
double g = 1.0;
for (;;) {
const double adj = g * y;
const double adj_sq = adj * adj;
if (adj_sq >= prev) {
g = g / 3.0;
continue;
}
const double tx = value - adj;
if (tx < 0 || tx > 1) {
g = g / 3.0;
continue;
}
if (prev < kErr) {
return value;
}
if (y * y < kErr) {
return value;
}
if (tx == value) {
return value;
}
if (tx == 0 || tx == 1) {
g = g / 3.0;
continue;
}
value = tx;
yprev = y;
break;
}
}
}
// NOTES: See also: Asymptotic inversion of the incomplete beta function.
// https://core.ac.uk/download/pdf/82140723.pdf
//
// NOTE: See the Boost library documentation as well:
// https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
}
} // namespace
double BetaIncomplete(const double x, const double p, const double q) {
// Error cases.
if (p < 0 || q < 0 || x < 0 || x > 1.0) {
return std::numeric_limits<double>::infinity();
}
if (x == 0 || x == 1) {
return x;
}
// ln(Beta(p, q))
double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
return BetaIncompleteImpl(x, p, q, beta);
}
double BetaIncompleteInv(const double p, const double q, const double alpha) {
// Error cases.
if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
return std::numeric_limits<double>::infinity();
}
if (alpha == 0 || alpha == 1) {
return alpha;
}
// ln(Beta(p, q))
double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
return BetaIncompleteInvImpl(p, q, beta, alpha);
}
// Given `num_trials` trials each with probability `p` of success, the
// probability of no failures is `p^k`. To ensure the probability of a failure
// is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function
// computes `p` from that equation.
double RequiredSuccessProbability(const double p_fail, const int num_trials) {
double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
ABSL_ASSERT(p > 0);
return p;
}
double ZScore(double expected_mean, const DistributionMoments& moments) {
return (moments.mean - expected_mean) /
(std::sqrt(moments.variance) /
std::sqrt(static_cast<double>(moments.n)));
}
double MaxErrorTolerance(double acceptance_probability) {
double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
const double max_err = InverseNormalSurvival(one_sided_pvalue);
ABSL_ASSERT(max_err > 0);
return max_err;
}
} // namespace random_internal
ABSL_NAMESPACE_END
} // namespace absl