Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

281 lines
9.8 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/log_uniform_int_distribution.h"
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
template <typename IntType>
class LogUniformIntDistributionTypeTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int8_t, int16_t, int32_t, int64_t, //
uint8_t, uint16_t, uint32_t, uint64_t>;
TYPED_TEST_CASE(LogUniformIntDistributionTypeTest, IntTypes);
TYPED_TEST(LogUniformIntDistributionTypeTest, SerializeTest) {
using param_type =
typename absl::log_uniform_int_distribution<TypeParam>::param_type;
using Limits = std::numeric_limits<TypeParam>;
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
for (const auto& param : {
param_type(0, 1), //
param_type(0, 2), //
param_type(0, 2, 10), //
param_type(9, 32, 4), //
param_type(1, 101, 10), //
param_type(1, Limits::max() / 2), //
param_type(0, Limits::max() - 1), //
param_type(0, Limits::max(), 2), //
param_type(0, Limits::max(), 10), //
param_type(Limits::min(), 0), //
param_type(Limits::lowest(), Limits::max()), //
param_type(Limits::min(), Limits::max()), //
}) {
// Validate parameters.
const auto min = param.min();
const auto max = param.max();
const auto base = param.base();
absl::log_uniform_int_distribution<TypeParam> before(min, max, base);
EXPECT_EQ(before.min(), param.min());
EXPECT_EQ(before.max(), param.max());
EXPECT_EQ(before.base(), param.base());
{
absl::log_uniform_int_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
}
// Validate stream serialization.
std::stringstream ss;
ss << before;
absl::log_uniform_int_distribution<TypeParam> after(3, 6, 17);
EXPECT_NE(before.max(), after.max());
EXPECT_NE(before.base(), after.base());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.min(), after.min());
EXPECT_EQ(before.max(), after.max());
EXPECT_EQ(before.base(), after.base());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
// Smoke test.
auto sample_min = after.max();
auto sample_max = after.min();
for (int i = 0; i < kCount; i++) {
auto sample = after(gen);
EXPECT_GE(sample, after.min());
EXPECT_LE(sample, after.max());
if (sample > sample_max) sample_max = sample;
if (sample < sample_min) sample_min = sample;
}
ABSL_INTERNAL_LOG(INFO,
absl::StrCat("Range: ", +sample_min, ", ", +sample_max));
}
}
using log_uniform_i32 = absl::log_uniform_int_distribution<int32_t>;
class LogUniformIntChiSquaredTest
: public testing::TestWithParam<log_uniform_i32::param_type> {
public:
// The ChiSquaredTestImpl provides a chi-squared goodness of fit test for
// data generated by the log-uniform-int distribution.
double ChiSquaredTestImpl();
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};
double LogUniformIntChiSquaredTest::ChiSquaredTestImpl() {
using absl::random_internal::kChiSquared;
const auto& param = GetParam();
// Check the distribution of L=log(log_uniform_int_distribution, base),
// expecting that L is roughly uniformly distributed, that is:
//
// P[L=0] ~= P[L=1] ~= ... ~= P[L=log(max)]
//
// For a total of X entries, each bucket should contain some number of samples
// in the interval [X/k - a, X/k + a].
//
// Where `a` is approximately sqrt(X/k). This is validated by bucketing
// according to the log function and using a chi-squared test for uniformity.
const bool is_2 = (param.base() == 2);
const double base_log = 1.0 / std::log(param.base());
const auto bucket_index = [base_log, is_2, &param](int32_t x) {
uint64_t y = static_cast<uint64_t>(x) - param.min();
return (y == 0) ? 0
: is_2 ? static_cast<int>(1 + std::log2(y))
: static_cast<int>(1 + std::log(y) * base_log);
};
const int max_bucket = bucket_index(param.max()); // inclusive
const size_t trials = 15 + (max_bucket + 1) * 10;
log_uniform_i32 dist(param);
std::vector<int64_t> buckets(max_bucket + 1);
for (size_t i = 0; i < trials; ++i) {
const auto sample = dist(rng_);
// Check the bounds.
ABSL_ASSERT(sample <= dist.max());
ABSL_ASSERT(sample >= dist.min());
// Convert the output of the generator to one of num_bucket buckets.
int bucket = bucket_index(sample);
ABSL_ASSERT(bucket <= max_bucket);
++buckets[bucket];
}
// The null-hypothesis is that the distribution is uniform with respect to
// log-uniform-int bucketization.
const int dof = buckets.size() - 1;
const double expected = trials / static_cast<double>(buckets.size());
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
double chi_square = absl::random_internal::ChiSquareWithExpected(
std::begin(buckets), std::end(buckets), expected);
const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
if (chi_square > threshold) {
ABSL_INTERNAL_LOG(INFO, "values");
for (size_t i = 0; i < buckets.size(); i++) {
ABSL_INTERNAL_LOG(INFO, absl::StrCat(i, ": ", buckets[i]));
}
ABSL_INTERNAL_LOG(INFO,
absl::StrFormat("trials=%d\n"
"%s(data, %d) = %f (%f)\n"
"%s @ 0.98 = %f",
trials, kChiSquared, dof, chi_square, p,
kChiSquared, threshold));
}
return p;
}
TEST_P(LogUniformIntChiSquaredTest, MultiTest) {
const int kTrials = 5;
int failures = 0;
for (int i = 0; i < kTrials; i++) {
double p_value = ChiSquaredTestImpl();
if (p_value < 0.005) {
failures++;
}
}
// There is a 0.10% chance of producing at least one failure, so raise the
// failure threshold high enough to allow for a flake rate < 10,000.
EXPECT_LE(failures, 4);
}
// Generate the parameters for the test.
std::vector<log_uniform_i32::param_type> GenParams() {
using Param = log_uniform_i32::param_type;
using Limits = std::numeric_limits<int32_t>;
return std::vector<Param>{
Param{0, 1, 2},
Param{1, 1, 2},
Param{0, 2, 2},
Param{0, 3, 2},
Param{0, 4, 2},
Param{0, 9, 10},
Param{0, 10, 10},
Param{0, 11, 10},
Param{1, 10, 10},
Param{0, (1 << 8) - 1, 2},
Param{0, (1 << 8), 2},
Param{0, (1 << 30) - 1, 2},
Param{-1000, 1000, 10},
Param{0, Limits::max(), 2},
Param{0, Limits::max(), 3},
Param{0, Limits::max(), 10},
Param{Limits::min(), 0},
Param{Limits::min(), Limits::max(), 2},
};
}
std::string ParamName(
const ::testing::TestParamInfo<log_uniform_i32::param_type>& info) {
const auto& p = info.param;
std::string name =
absl::StrCat("min_", p.min(), "__max_", p.max(), "__base_", p.base());
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(All, LogUniformIntChiSquaredTest,
::testing::ValuesIn(GenParams()), ParamName);
// NOTE: absl::log_uniform_int_distribution is not guaranteed to be stable.
TEST(LogUniformIntDistributionTest, StabilityTest) {
using testing::ElementsAre;
// absl::uniform_int_distribution stability relies on
// absl::random_internal::LeadingSetBit, std::log, std::pow.
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(6);
{
absl::log_uniform_int_distribution<int32_t> dist(0, 256);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(256, 66, 4, 6, 57, 103));
}
urbg.reset();
{
absl::log_uniform_int_distribution<int32_t> dist(0, 256, 10);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(8, 4, 0, 0, 0, 69));
}
}
} // namespace