|
|
|
// Copyright 2020 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
//
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// File: cord.h
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// This file defines the `absl::Cord` data structure and operations on that data
|
|
|
|
// structure. A Cord is a string-like sequence of characters optimized for
|
|
|
|
// specific use cases. Unlike a `std::string`, which stores an array of
|
|
|
|
// contiguous characters, Cord data is stored in a structure consisting of
|
|
|
|
// separate, reference-counted "chunks." (Currently, this implementation is a
|
|
|
|
// tree structure, though that implementation may change.)
|
|
|
|
//
|
|
|
|
// Because a Cord consists of these chunks, data can be added to or removed from
|
|
|
|
// a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a
|
|
|
|
// `std::string`, a Cord can therefore accomodate data that changes over its
|
|
|
|
// lifetime, though it's not quite "mutable"; it can change only in the
|
|
|
|
// attachment, detachment, or rearrangement of chunks of its constituent data.
|
|
|
|
//
|
|
|
|
// A Cord provides some benefit over `std::string` under the following (albeit
|
|
|
|
// narrow) circumstances:
|
|
|
|
//
|
|
|
|
// * Cord data is designed to grow and shrink over a Cord's lifetime. Cord
|
|
|
|
// provides efficient insertions and deletions at the start and end of the
|
|
|
|
// character sequences, avoiding copies in those cases. Static data should
|
|
|
|
// generally be stored as strings.
|
|
|
|
// * External memory consisting of string-like data can be directly added to
|
|
|
|
// a Cord without requiring copies or allocations.
|
|
|
|
// * Cord data may be shared and copied cheaply. Cord provides a copy-on-write
|
|
|
|
// implementation and cheap sub-Cord operations. Copying a Cord is an O(1)
|
|
|
|
// operation.
|
|
|
|
//
|
|
|
|
// As a consequence to the above, Cord data is generally large. Small data
|
|
|
|
// should generally use strings, as construction of a Cord requires some
|
|
|
|
// overhead. Small Cords (<= 15 bytes) are represented inline, but most small
|
|
|
|
// Cords are expected to grow over their lifetimes.
|
|
|
|
//
|
|
|
|
// Note that because a Cord is made up of separate chunked data, random access
|
|
|
|
// to character data within a Cord is slower than within a `std::string`.
|
|
|
|
//
|
|
|
|
// Thread Safety
|
|
|
|
//
|
|
|
|
// Cord has the same thread-safety properties as many other types like
|
|
|
|
// std::string, std::vector<>, int, etc -- it is thread-compatible. In
|
|
|
|
// particular, if threads do not call non-const methods, then it is safe to call
|
|
|
|
// const methods without synchronization. Copying a Cord produces a new instance
|
|
|
|
// that can be used concurrently with the original in arbitrary ways.
|
|
|
|
|
|
|
|
#ifndef ABSL_STRINGS_CORD_H_
|
|
|
|
#define ABSL_STRINGS_CORD_H_
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <cstring>
|
|
|
|
#include <iostream>
|
|
|
|
#include <iterator>
|
|
|
|
#include <string>
|
|
|
|
#include <type_traits>
|
|
|
|
|
|
|
|
#include "absl/base/internal/endian.h"
|
|
|
|
#include "absl/base/internal/invoke.h"
|
|
|
|
#include "absl/base/internal/per_thread_tls.h"
|
|
|
|
#include "absl/base/macros.h"
|
|
|
|
#include "absl/base/port.h"
|
|
|
|
#include "absl/container/inlined_vector.h"
|
|
|
|
#include "absl/functional/function_ref.h"
|
|
|
|
#include "absl/meta/type_traits.h"
|
|
|
|
#include "absl/strings/internal/cord_internal.h"
|
|
|
|
#include "absl/strings/internal/resize_uninitialized.h"
|
|
|
|
#include "absl/strings/string_view.h"
|
|
|
|
#include "absl/types/optional.h"
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
class Cord;
|
|
|
|
class CordTestPeer;
|
|
|
|
template <typename Releaser>
|
|
|
|
Cord MakeCordFromExternal(absl::string_view, Releaser&&);
|
|
|
|
void CopyCordToString(const Cord& src, std::string* dst);
|
|
|
|
|
|
|
|
// Cord
|
|
|
|
//
|
|
|
|
// A Cord is a sequence of characters, designed to be more efficient than a
|
|
|
|
// `std::string` in certain circumstances: namely, large string data that needs
|
|
|
|
// to change over its lifetime or shared, especially when such data is shared
|
|
|
|
// across API boundaries.
|
|
|
|
//
|
|
|
|
// A Cord stores its character data in a structure that allows efficient prepend
|
|
|
|
// and append operations. This makes a Cord useful for large string data sent
|
|
|
|
// over in a wire format that may need to be prepended or appended at some point
|
|
|
|
// during the data exchange (e.g. HTTP, protocol buffers). For example, a
|
|
|
|
// Cord is useful for storing an HTTP request, and prepending an HTTP header to
|
|
|
|
// such a request.
|
|
|
|
//
|
|
|
|
// Cords should not be used for storing general string data, however. They
|
|
|
|
// require overhead to construct and are slower than strings for random access.
|
|
|
|
//
|
|
|
|
// The Cord API provides the following common API operations:
|
|
|
|
//
|
|
|
|
// * Create or assign Cords out of existing string data, memory, or other Cords
|
|
|
|
// * Append and prepend data to an existing Cord
|
|
|
|
// * Create new Sub-Cords from existing Cord data
|
|
|
|
// * Swap Cord data and compare Cord equality
|
|
|
|
// * Write out Cord data by constructing a `std::string`
|
|
|
|
//
|
|
|
|
// Additionally, the API provides iterator utilities to iterate through Cord
|
|
|
|
// data via chunks or character bytes.
|
|
|
|
//
|
|
|
|
class Cord {
|
|
|
|
private:
|
|
|
|
template <typename T>
|
|
|
|
using EnableIfString =
|
|
|
|
absl::enable_if_t<std::is_same<T, std::string>::value, int>;
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Cord::Cord() Constructors
|
|
|
|
|
|
|
|
// Creates an empty Cord
|
|
|
|
constexpr Cord() noexcept;
|
|
|
|
|
|
|
|
// Creates a Cord from an existing Cord. Cord is copyable and efficiently
|
|
|
|
// movable. The moved-from state is valid but unspecified.
|
|
|
|
Cord(const Cord& src);
|
|
|
|
Cord(Cord&& src) noexcept;
|
|
|
|
Cord& operator=(const Cord& x);
|
|
|
|
Cord& operator=(Cord&& x) noexcept;
|
|
|
|
|
|
|
|
// Creates a Cord from a `src` string. This constructor is marked explicit to
|
|
|
|
// prevent implicit Cord constructions from arguments convertible to an
|
|
|
|
// `absl::string_view`.
|
|
|
|
explicit Cord(absl::string_view src);
|
|
|
|
Cord& operator=(absl::string_view src);
|
|
|
|
|
|
|
|
// Creates a Cord from a `std::string&&` rvalue. These constructors are
|
|
|
|
// templated to avoid ambiguities for types that are convertible to both
|
|
|
|
// `absl::string_view` and `std::string`, such as `const char*`.
|
|
|
|
//
|
|
|
|
// Note that these functions reserve the right to use the `string&&`'s
|
|
|
|
// memory and that they will do so in the future.
|
|
|
|
template <typename T, EnableIfString<T> = 0>
|
|
|
|
explicit Cord(T&& src) : Cord(absl::string_view(src)) {}
|
|
|
|
template <typename T, EnableIfString<T> = 0>
|
|
|
|
Cord& operator=(T&& src);
|
|
|
|
|
|
|
|
// Cord::~Cord()
|
|
|
|
//
|
|
|
|
// Destructs the Cord
|
|
|
|
~Cord() {
|
|
|
|
if (contents_.is_tree()) DestroyCordSlow();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cord::MakeCordFromExternal(data, callable)
|
|
|
|
//
|
|
|
|
// Creates a Cord that takes ownership of external string memory. The
|
|
|
|
// contents of `data` are not copied to the Cord; instead, the external
|
|
|
|
// memory is added to the Cord and reference-counted. This data may not be
|
|
|
|
// changed for the life of the Cord, though it may be prepended or appended
|
|
|
|
// to.
|
|
|
|
//
|
|
|
|
// `MakeCordFromExternal()` takes a callable "releaser" that is invoked when
|
|
|
|
// the reference count for `data` reaches zero. As noted above, this data must
|
|
|
|
// remain live until the releaser is invoked. The callable releaser also must:
|
|
|
|
//
|
|
|
|
// * be move constructible
|
|
|
|
// * support `void operator()(absl::string_view) const` or `void operator()`
|
|
|
|
// * not have alignment requirement greater than what is guaranteed by
|
|
|
|
// `::operator new`. This alignment is dictated by
|
|
|
|
// `alignof(std::max_align_t)` (pre-C++17 code) or
|
|
|
|
// `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code).
|
|
|
|
//
|
|
|
|
// Example:
|
|
|
|
//
|
|
|
|
// Cord MakeCord(BlockPool* pool) {
|
|
|
|
// Block* block = pool->NewBlock();
|
|
|
|
// FillBlock(block);
|
|
|
|
// return absl::MakeCordFromExternal(
|
|
|
|
// block->ToStringView(),
|
|
|
|
// [pool, block](absl::string_view v) {
|
|
|
|
// pool->FreeBlock(block, v);
|
|
|
|
// });
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// WARNING: Because a Cord can be reference-counted, it's likely a bug if your
|
|
|
|
// releaser doesn't do anything. For example, consider the following:
|
|
|
|
//
|
|
|
|
// void Foo(const char* buffer, int len) {
|
|
|
|
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
|
|
|
|
// [](absl::string_view) {});
|
|
|
|
//
|
|
|
|
// // BUG: If Bar() copies its cord for any reason, including keeping a
|
|
|
|
// // substring of it, the lifetime of buffer might be extended beyond
|
|
|
|
// // when Foo() returns.
|
|
|
|
// Bar(c);
|
|
|
|
// }
|
|
|
|
template <typename Releaser>
|
|
|
|
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
|
|
|
|
|
|
|
|
// Cord::Clear()
|
|
|
|
//
|
|
|
|
// Releases the Cord data. Any nodes that share data with other Cords, if
|
|
|
|
// applicable, will have their reference counts reduced by 1.
|
|
|
|
void Clear();
|
|
|
|
|
|
|
|
// Cord::Append()
|
|
|
|
//
|
|
|
|
// Appends data to the Cord, which may come from another Cord or other string
|
|
|
|
// data.
|
|
|
|
void Append(const Cord& src);
|
|
|
|
void Append(Cord&& src);
|
|
|
|
void Append(absl::string_view src);
|
|
|
|
template <typename T, EnableIfString<T> = 0>
|
|
|
|
void Append(T&& src);
|
|
|
|
|
|
|
|
// Cord::Prepend()
|
|
|
|
//
|
|
|
|
// Prepends data to the Cord, which may come from another Cord or other string
|
|
|
|
// data.
|
|
|
|
void Prepend(const Cord& src);
|
|
|
|
void Prepend(absl::string_view src);
|
|
|
|
template <typename T, EnableIfString<T> = 0>
|
|
|
|
void Prepend(T&& src);
|
|
|
|
|
|
|
|
// Cord::RemovePrefix()
|
|
|
|
//
|
|
|
|
// Removes the first `n` bytes of a Cord.
|
|
|
|
void RemovePrefix(size_t n);
|
|
|
|
void RemoveSuffix(size_t n);
|
|
|
|
|
|
|
|
// Cord::Subcord()
|
|
|
|
//
|
|
|
|
// Returns a new Cord representing the subrange [pos, pos + new_size) of
|
|
|
|
// *this. If pos >= size(), the result is empty(). If
|
|
|
|
// (pos + new_size) >= size(), the result is the subrange [pos, size()).
|
|
|
|
Cord Subcord(size_t pos, size_t new_size) const;
|
|
|
|
|
|
|
|
// swap()
|
|
|
|
//
|
|
|
|
// Swaps the data of Cord `x` with Cord `y`.
|
|
|
|
friend void swap(Cord& x, Cord& y) noexcept;
|
|
|
|
|
|
|
|
// Cord::size()
|
|
|
|
//
|
|
|
|
// Returns the size of the Cord.
|
|
|
|
size_t size() const;
|
|
|
|
|
|
|
|
// Cord::empty()
|
|
|
|
//
|
|
|
|
// Determines whether the given Cord is empty, returning `true` is so.
|
|
|
|
bool empty() const;
|
|
|
|
|
|
|
|
// Cord::EstimatedMemoryUsage()
|
|
|
|
//
|
|
|
|
// Returns the *approximate* number of bytes held in full or in part by this
|
|
|
|
// Cord (which may not remain the same between invocations). Note that Cords
|
|
|
|
// that share memory could each be "charged" independently for the same shared
|
|
|
|
// memory.
|
|
|
|
size_t EstimatedMemoryUsage() const;
|
|
|
|
|
|
|
|
// Cord::Compare()
|
|
|
|
//
|
|
|
|
// Compares 'this' Cord with rhs. This function and its relatives treat Cords
|
|
|
|
// as sequences of unsigned bytes. The comparison is a straightforward
|
|
|
|
// lexicographic comparison. `Cord::Compare()` returns values as follows:
|
|
|
|
//
|
|
|
|
// -1 'this' Cord is smaller
|
|
|
|
// 0 two Cords are equal
|
|
|
|
// 1 'this' Cord is larger
|
|
|
|
int Compare(absl::string_view rhs) const;
|
|
|
|
int Compare(const Cord& rhs) const;
|
|
|
|
|
|
|
|
// Cord::StartsWith()
|
|
|
|
//
|
|
|
|
// Determines whether the Cord starts with the passed string data `rhs`.
|
|
|
|
bool StartsWith(const Cord& rhs) const;
|
|
|
|
bool StartsWith(absl::string_view rhs) const;
|
|
|
|
|
|
|
|
// Cord::EndsWidth()
|
|
|
|
//
|
|
|
|
// Determines whether the Cord ends with the passed string data `rhs`.
|
|
|
|
bool EndsWith(absl::string_view rhs) const;
|
|
|
|
bool EndsWith(const Cord& rhs) const;
|
|
|
|
|
|
|
|
// Cord::operator std::string()
|
|
|
|
//
|
|
|
|
// Converts a Cord into a `std::string()`. This operator is marked explicit to
|
|
|
|
// prevent unintended Cord usage in functions that take a string.
|
|
|
|
explicit operator std::string() const;
|
|
|
|
|
|
|
|
// CopyCordToString()
|
|
|
|
//
|
|
|
|
// Copies the contents of a `src` Cord into a `*dst` string.
|
|
|
|
//
|
|
|
|
// This function optimizes the case of reusing the destination string since it
|
|
|
|
// can reuse previously allocated capacity. However, this function does not
|
|
|
|
// guarantee that pointers previously returned by `dst->data()` remain valid
|
|
|
|
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
|
|
|
|
// object, prefer to simply use the conversion operator to `std::string`.
|
|
|
|
friend void CopyCordToString(const Cord& src, std::string* dst);
|
|
|
|
|
|
|
|
class CharIterator;
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
// Cord::ChunkIterator
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// A `Cord::ChunkIterator` allows iteration over the constituent chunks of its
|
|
|
|
// Cord. Such iteration allows you to perform non-const operatons on the data
|
|
|
|
// of a Cord without modifying it.
|
|
|
|
//
|
|
|
|
// Generally, you do not instantiate a `Cord::ChunkIterator` directly;
|
|
|
|
// instead, you create one implicitly through use of the `Cord::Chunks()`
|
|
|
|
// member function.
|
|
|
|
//
|
|
|
|
// The `Cord::ChunkIterator` has the following properties:
|
|
|
|
//
|
|
|
|
// * The iterator is invalidated after any non-const operation on the
|
|
|
|
// Cord object over which it iterates.
|
|
|
|
// * The `string_view` returned by dereferencing a valid, non-`end()`
|
|
|
|
// iterator is guaranteed to be non-empty.
|
|
|
|
// * Two `ChunkIterator` objects can be compared equal if and only if they
|
|
|
|
// remain valid and iterate over the same Cord.
|
|
|
|
// * The iterator in this case is a proxy iterator; the `string_view`
|
|
|
|
// returned by the iterator does not live inside the Cord, and its
|
|
|
|
// lifetime is limited to the lifetime of the iterator itself. To help
|
|
|
|
// prevent lifetime issues, `ChunkIterator::reference` is not a true
|
|
|
|
// reference type and is equivalent to `value_type`.
|
|
|
|
// * The iterator keeps state that can grow for Cords that contain many
|
|
|
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
|
|
|
// const reference instead of by value.
|
|
|
|
class ChunkIterator {
|
|
|
|
public:
|
|
|
|
using iterator_category = std::input_iterator_tag;
|
|
|
|
using value_type = absl::string_view;
|
|
|
|
using difference_type = ptrdiff_t;
|
|
|
|
using pointer = const value_type*;
|
|
|
|
using reference = value_type;
|
|
|
|
|
|
|
|
ChunkIterator() = default;
|
|
|
|
|
|
|
|
ChunkIterator& operator++();
|
|
|
|
ChunkIterator operator++(int);
|
|
|
|
bool operator==(const ChunkIterator& other) const;
|
|
|
|
bool operator!=(const ChunkIterator& other) const;
|
|
|
|
reference operator*() const;
|
|
|
|
pointer operator->() const;
|
|
|
|
|
|
|
|
friend class Cord;
|
|
|
|
friend class CharIterator;
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Constructs a `begin()` iterator from `cord`.
|
|
|
|
explicit ChunkIterator(const Cord* cord);
|
|
|
|
|
|
|
|
// Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than
|
|
|
|
// `current_chunk_.size()`.
|
|
|
|
void RemoveChunkPrefix(size_t n);
|
|
|
|
Cord AdvanceAndReadBytes(size_t n);
|
|
|
|
void AdvanceBytes(size_t n);
|
|
|
|
// Iterates `n` bytes, where `n` is expected to be greater than or equal to
|
|
|
|
// `current_chunk_.size()`.
|
|
|
|
void AdvanceBytesSlowPath(size_t n);
|
|
|
|
|
|
|
|
// A view into bytes of the current `CordRep`. It may only be a view to a
|
|
|
|
// suffix of bytes if this is being used by `CharIterator`.
|
|
|
|
absl::string_view current_chunk_;
|
|
|
|
// The current leaf, or `nullptr` if the iterator points to short data.
|
|
|
|
// If the current chunk is a substring node, current_leaf_ points to the
|
|
|
|
// underlying flat or external node.
|
|
|
|
absl::cord_internal::CordRep* current_leaf_ = nullptr;
|
|
|
|
// The number of bytes left in the `Cord` over which we are iterating.
|
|
|
|
size_t bytes_remaining_ = 0;
|
|
|
|
absl::InlinedVector<absl::cord_internal::CordRep*, 4>
|
|
|
|
stack_of_right_children_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Cord::ChunkIterator::chunk_begin()
|
|
|
|
//
|
|
|
|
// Returns an iterator to the first chunk of the `Cord`.
|
|
|
|
//
|
|
|
|
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for
|
|
|
|
// iterating over the chunks of a Cord. This method may be useful for getting
|
|
|
|
// a `ChunkIterator` where range-based for-loops are not useful.
|
|
|
|
//
|
|
|
|
// Example:
|
|
|
|
//
|
|
|
|
// absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,
|
|
|
|
// absl::string_view s) {
|
|
|
|
// return std::find(c.chunk_begin(), c.chunk_end(), s);
|
|
|
|
// }
|
|
|
|
ChunkIterator chunk_begin() const;
|
|
|
|
|
|
|
|
// Cord::ChunkItertator::chunk_end()
|
|
|
|
//
|
|
|
|
// Returns an iterator one increment past the last chunk of the `Cord`.
|
|
|
|
//
|
|
|
|
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for
|
|
|
|
// iterating over the chunks of a Cord. This method may be useful for getting
|
|
|
|
// a `ChunkIterator` where range-based for-loops may not be available.
|
|
|
|
ChunkIterator chunk_end() const;
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
// Cord::ChunkIterator::ChunkRange
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,
|
|
|
|
// producing an iterator which can be used within a range-based for loop.
|
|
|
|
// Construction of a `ChunkRange` will return an iterator pointing to the
|
|
|
|
// first chunk of the Cord. Generally, do not construct a `ChunkRange`
|
|
|
|
// directly; instead, prefer to use the `Cord::Chunks()` method.
|
|
|
|
//
|
|
|
|
// Implementation note: `ChunkRange` is simply a convenience wrapper over
|
|
|
|
// `Cord::chunk_begin()` and `Cord::chunk_end()`.
|
|
|
|
class ChunkRange {
|
|
|
|
public:
|
|
|
|
explicit ChunkRange(const Cord* cord) : cord_(cord) {}
|
|
|
|
|
|
|
|
ChunkIterator begin() const;
|
|
|
|
ChunkIterator end() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
const Cord* cord_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Cord::Chunks()
|
|
|
|
//
|
|
|
|
// Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks
|
|
|
|
// of a `Cord` with a range-based for-loop. For most iteration tasks on a
|
|
|
|
// Cord, use `Cord::Chunks()` to retrieve this iterator.
|
|
|
|
//
|
|
|
|
// Example:
|
|
|
|
//
|
|
|
|
// void ProcessChunks(const Cord& cord) {
|
|
|
|
// for (absl::string_view chunk : cord.Chunks()) { ... }
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// Note that the ordinary caveats of temporary lifetime extension apply:
|
|
|
|
//
|
|
|
|
// void Process() {
|
|
|
|
// for (absl::string_view chunk : CordFactory().Chunks()) {
|
|
|
|
// // The temporary Cord returned by CordFactory has been destroyed!
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
ChunkRange Chunks() const;
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
// Cord::CharIterator
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// A `Cord::CharIterator` allows iteration over the constituent characters of
|
|
|
|
// a `Cord`.
|
|
|
|
//
|
|
|
|
// Generally, you do not instantiate a `Cord::CharIterator` directly; instead,
|
|
|
|
// you create one implicitly through use of the `Cord::Chars()` member
|
|
|
|
// function.
|
|
|
|
//
|
|
|
|
// A `Cord::CharIterator` has the following properties:
|
|
|
|
//
|
|
|
|
// * The iterator is invalidated after any non-const operation on the
|
|
|
|
// Cord object over which it iterates.
|
|
|
|
// * Two `CharIterator` objects can be compared equal if and only if they
|
|
|
|
// remain valid and iterate over the same Cord.
|
|
|
|
// * The iterator keeps state that can grow for Cords that contain many
|
|
|
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
|
|
|
// const reference instead of by value.
|
|
|
|
// * This type cannot act as a forward iterator because a `Cord` can reuse
|
|
|
|
// sections of memory. This fact violates the requirement for forward
|
|
|
|
// iterators to compare equal if dereferencing them returns the same
|
|
|
|
// object.
|
|
|
|
class CharIterator {
|
|
|
|
public:
|
|
|
|
using iterator_category = std::input_iterator_tag;
|
|
|
|
using value_type = char;
|
|
|
|
using difference_type = ptrdiff_t;
|
|
|
|
using pointer = const char*;
|
|
|
|
using reference = const char&;
|
|
|
|
|
|
|
|
CharIterator() = default;
|
|
|
|
|
|
|
|
CharIterator& operator++();
|
|
|
|
CharIterator operator++(int);
|
|
|
|
bool operator==(const CharIterator& other) const;
|
|
|
|
bool operator!=(const CharIterator& other) const;
|
|
|
|
reference operator*() const;
|
|
|
|
pointer operator->() const;
|
|
|
|
|
|
|
|
friend Cord;
|
|
|
|
|
|
|
|
private:
|
|
|
|
explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}
|
|
|
|
|
|
|
|
ChunkIterator chunk_iterator_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Cord::CharIterator::AdvanceAndRead()
|
|
|
|
//
|
|
|
|
// Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes
|
|
|
|
// advanced as a separate `Cord`. `n_bytes` must be less than or equal to the
|
|
|
|
// number of bytes within the Cord; otherwise, behavior is undefined. It is
|
|
|
|
// valid to pass `char_end()` and `0`.
|
|
|
|
static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);
|
|
|
|
|
|
|
|
// Cord::CharIterator::Advance()
|
|
|
|
//
|
|
|
|
// Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than
|
|
|
|
// or equal to the number of bytes remaining within the Cord; otherwise,
|
|
|
|
// behavior is undefined. It is valid to pass `char_end()` and `0`.
|
|
|
|
static void Advance(CharIterator* it, size_t n_bytes);
|
|
|
|
|
|
|
|
// Cord::CharIterator::ChunkRemaining()
|
|
|
|
//
|
|
|
|
// Returns the longest contiguous view starting at the iterator's position.
|
|
|
|
//
|
|
|
|
// `it` must be dereferenceable.
|
|
|
|
static absl::string_view ChunkRemaining(const CharIterator& it);
|
|
|
|
|
|
|
|
// Cord::CharIterator::char_begin()
|
|
|
|
//
|
|
|
|
// Returns an iterator to the first character of the `Cord`.
|
|
|
|
//
|
|
|
|
// Generally, prefer using `Cord::Chars()` within a range-based for loop for
|
|
|
|
// iterating over the chunks of a Cord. This method may be useful for getting
|
|
|
|
// a `CharIterator` where range-based for-loops may not be available.
|
|
|
|
CharIterator char_begin() const;
|
|
|
|
|
|
|
|
// Cord::CharIterator::char_end()
|
|
|
|
//
|
|
|
|
// Returns an iterator to one past the last character of the `Cord`.
|
|
|
|
//
|
|
|
|
// Generally, prefer using `Cord::Chars()` within a range-based for loop for
|
|
|
|
// iterating over the chunks of a Cord. This method may be useful for getting
|
|
|
|
// a `CharIterator` where range-based for-loops are not useful.
|
|
|
|
CharIterator char_end() const;
|
|
|
|
|
|
|
|
// Cord::CharIterator::CharRange
|
|
|
|
//
|
|
|
|
// `CharRange` is a helper class for iterating over the characters of a
|
|
|
|
// producing an iterator which can be used within a range-based for loop.
|
|
|
|
// Construction of a `CharRange` will return an iterator pointing to the first
|
|
|
|
// character of the Cord. Generally, do not construct a `CharRange` directly;
|
|
|
|
// instead, prefer to use the `Cord::Chars()` method show below.
|
|
|
|
//
|
|
|
|
// Implementation note: `CharRange` is simply a convenience wrapper over
|
|
|
|
// `Cord::char_begin()` and `Cord::char_end()`.
|
|
|
|
class CharRange {
|
|
|
|
public:
|
|
|
|
explicit CharRange(const Cord* cord) : cord_(cord) {}
|
|
|
|
|
|
|
|
CharIterator begin() const;
|
|
|
|
CharIterator end() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
const Cord* cord_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Cord::CharIterator::Chars()
|
|
|
|
//
|
|
|
|
// Returns a `Cord::CharIterator` for iterating over the characters of a
|
|
|
|
// `Cord` with a range-based for-loop. For most character-based iteration
|
|
|
|
// tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.
|
|
|
|
//
|
|
|
|
// Example:
|
|
|
|
//
|
|
|
|
// void ProcessCord(const Cord& cord) {
|
|
|
|
// for (char c : cord.Chars()) { ... }
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// Note that the ordinary caveats of temporary lifetime extension apply:
|
|
|
|
//
|
|
|
|
// void Process() {
|
|
|
|
// for (char c : CordFactory().Chars()) {
|
|
|
|
// // The temporary Cord returned by CordFactory has been destroyed!
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
CharRange Chars() const;
|
|
|
|
|
|
|
|
// Cord::operator[]
|
|
|
|
//
|
|
|
|
// Get the "i"th character of the Cord and returns it, provided that
|
|
|
|
// 0 <= i < Cord.size().
|
|
|
|
//
|
|
|
|
// NOTE: This routine is reasonably efficient. It is roughly
|
|
|
|
// logarithmic based on the number of chunks that make up the cord. Still,
|
|
|
|
// if you need to iterate over the contents of a cord, you should
|
|
|
|
// use a CharIterator/ChunkIterator rather than call operator[] or Get()
|
|
|
|
// repeatedly in a loop.
|
|
|
|
char operator[](size_t i) const;
|
|
|
|
|
|
|
|
// Cord::TryFlat()
|
|
|
|
//
|
|
|
|
// If this cord's representation is a single flat array, return a
|
|
|
|
// string_view referencing that array. Otherwise return nullopt.
|
|
|
|
absl::optional<absl::string_view> TryFlat() const;
|
|
|
|
|
|
|
|
// Cord::Flatten()
|
|
|
|
//
|
|
|
|
// Flattens the cord into a single array and returns a view of the data.
|
|
|
|
//
|
|
|
|
// If the cord was already flat, the contents are not modified.
|
|
|
|
absl::string_view Flatten();
|
|
|
|
|
|
|
|
// Support absl::Cord as a sink object for absl::Format().
|
|
|
|
friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) {
|
|
|
|
cord->Append(part);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename H>
|
|
|
|
friend H AbslHashValue(H hash_state, const absl::Cord& c) {
|
|
|
|
absl::optional<absl::string_view> maybe_flat = c.TryFlat();
|
|
|
|
if (maybe_flat.has_value()) {
|
|
|
|
return H::combine(std::move(hash_state), *maybe_flat);
|
|
|
|
}
|
|
|
|
return c.HashFragmented(std::move(hash_state));
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
friend class CordTestPeer;
|
|
|
|
friend bool operator==(const Cord& lhs, const Cord& rhs);
|
|
|
|
friend bool operator==(const Cord& lhs, absl::string_view rhs);
|
|
|
|
|
|
|
|
// Call the provided function once for each cord chunk, in order. Unlike
|
|
|
|
// Chunks(), this API will not allocate memory.
|
|
|
|
void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;
|
|
|
|
|
|
|
|
// Allocates new contiguous storage for the contents of the cord. This is
|
|
|
|
// called by Flatten() when the cord was not already flat.
|
|
|
|
absl::string_view FlattenSlowPath();
|
|
|
|
|
|
|
|
// Actual cord contents are hidden inside the following simple
|
|
|
|
// class so that we can isolate the bulk of cord.cc from changes
|
|
|
|
// to the representation.
|
|
|
|
//
|
|
|
|
// InlineRep holds either a tree pointer, or an array of kMaxInline bytes.
|
|
|
|
class InlineRep {
|
|
|
|
public:
|
|
|
|
static constexpr unsigned char kMaxInline = 15;
|
|
|
|
static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");
|
|
|
|
// Tag byte & kMaxInline means we are storing a pointer.
|
|
|
|
static constexpr unsigned char kTreeFlag = 1 << 4;
|
|
|
|
// Tag byte & kProfiledFlag means we are profiling the Cord.
|
|
|
|
static constexpr unsigned char kProfiledFlag = 1 << 5;
|
|
|
|
|
|
|
|
constexpr InlineRep() : data_{} {}
|
|
|
|
InlineRep(const InlineRep& src);
|
|
|
|
InlineRep(InlineRep&& src);
|
|
|
|
InlineRep& operator=(const InlineRep& src);
|
|
|
|
InlineRep& operator=(InlineRep&& src) noexcept;
|
|
|
|
|
|
|
|
void Swap(InlineRep* rhs);
|
|
|
|
bool empty() const;
|
|
|
|
size_t size() const;
|
|
|
|
const char* data() const; // Returns nullptr if holding pointer
|
|
|
|
void set_data(const char* data, size_t n,
|
|
|
|
bool nullify_tail); // Discards pointer, if any
|
|
|
|
char* set_data(size_t n); // Write data to the result
|
|
|
|
// Returns nullptr if holding bytes
|
|
|
|
absl::cord_internal::CordRep* tree() const;
|
|
|
|
// Discards old pointer, if any
|
|
|
|
void set_tree(absl::cord_internal::CordRep* rep);
|
|
|
|
// Replaces a tree with a new root. This is faster than set_tree, but it
|
|
|
|
// should only be used when it's clear that the old rep was a tree.
|
|
|
|
void replace_tree(absl::cord_internal::CordRep* rep);
|
|
|
|
// Returns non-null iff was holding a pointer
|
|
|
|
absl::cord_internal::CordRep* clear();
|
|
|
|
// Convert to pointer if necessary
|
|
|
|
absl::cord_internal::CordRep* force_tree(size_t extra_hint);
|
|
|
|
void reduce_size(size_t n); // REQUIRES: holding data
|
|
|
|
void remove_prefix(size_t n); // REQUIRES: holding data
|
|
|
|
void AppendArray(const char* src_data, size_t src_size);
|
|
|
|
absl::string_view FindFlatStartPiece() const;
|
|
|
|
void AppendTree(absl::cord_internal::CordRep* tree);
|
|
|
|
void PrependTree(absl::cord_internal::CordRep* tree);
|
|
|
|
void GetAppendRegion(char** region, size_t* size, size_t max_length);
|
|
|
|
void GetAppendRegion(char** region, size_t* size);
|
|
|
|
bool IsSame(const InlineRep& other) const {
|
|
|
|
return memcmp(data_, other.data_, sizeof(data_)) == 0;
|
|
|
|
}
|
|
|
|
int BitwiseCompare(const InlineRep& other) const {
|
|
|
|
uint64_t x, y;
|
|
|
|
// Use memcpy to avoid anti-aliasing issues.
|
|
|
|
memcpy(&x, data_, sizeof(x));
|
|
|
|
memcpy(&y, other.data_, sizeof(y));
|
|
|
|
if (x == y) {
|
|
|
|
memcpy(&x, data_ + 8, sizeof(x));
|
|
|
|
memcpy(&y, other.data_ + 8, sizeof(y));
|
|
|
|
if (x == y) return 0;
|
|
|
|
}
|
|
|
|
return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)
|
|
|
|
? -1
|
|
|
|
: 1;
|
|
|
|
}
|
|
|
|
void CopyTo(std::string* dst) const {
|
|
|
|
// memcpy is much faster when operating on a known size. On most supported
|
|
|
|
// platforms, the small string optimization is large enough that resizing
|
|
|
|
// to 15 bytes does not cause a memory allocation.
|
|
|
|
absl::strings_internal::STLStringResizeUninitialized(dst,
|
|
|
|
sizeof(data_) - 1);
|
|
|
|
memcpy(&(*dst)[0], data_, sizeof(data_) - 1);
|
|
|
|
// erase is faster than resize because the logic for memory allocation is
|
|
|
|
// not needed.
|
|
|
|
dst->erase(data_[kMaxInline]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copies the inline contents into `dst`. Assumes the cord is not empty.
|
|
|
|
void CopyToArray(char* dst) const;
|
|
|
|
|
|
|
|
bool is_tree() const { return data_[kMaxInline] > kMaxInline; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
friend class Cord;
|
|
|
|
|
|
|
|
void AssignSlow(const InlineRep& src);
|
|
|
|
// Unrefs the tree, stops profiling, and zeroes the contents
|
|
|
|
void ClearSlow();
|
|
|
|
|
|
|
|
// If the data has length <= kMaxInline, we store it in data_[0..len-1],
|
|
|
|
// and store the length in data_[kMaxInline]. Else we store it in a tree
|
|
|
|
// and store a pointer to that tree in data_[0..sizeof(CordRep*)-1].
|
|
|
|
alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1];
|
|
|
|
};
|
|
|
|
InlineRep contents_;
|
|
|
|
|
|
|
|
// Helper for MemoryUsage()
|
|
|
|
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
|
|
|
|
|
|
|
|
// Helper for GetFlat() and TryFlat()
|
|
|
|
static bool GetFlatAux(absl::cord_internal::CordRep* rep,
|
|
|
|
absl::string_view* fragment);
|
|
|
|
|
|
|
|
// Helper for ForEachChunk()
|
|
|
|
static void ForEachChunkAux(
|
|
|
|
absl::cord_internal::CordRep* rep,
|
|
|
|
absl::FunctionRef<void(absl::string_view)> callback);
|
|
|
|
|
|
|
|
// The destructor for non-empty Cords.
|
|
|
|
void DestroyCordSlow();
|
|
|
|
|
|
|
|
// Out-of-line implementation of slower parts of logic.
|
|
|
|
void CopyToArraySlowPath(char* dst) const;
|
|
|
|
int CompareSlowPath(absl::string_view rhs, size_t compared_size,
|
|
|
|
size_t size_to_compare) const;
|
|
|
|
int CompareSlowPath(const Cord& rhs, size_t compared_size,
|
|
|
|
size_t size_to_compare) const;
|
|
|
|
bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;
|
|
|
|
bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;
|
|
|
|
int CompareImpl(const Cord& rhs) const;
|
|
|
|
|
|
|
|
template <typename ResultType, typename RHS>
|
|
|
|
friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
|
|
|
|
size_t size_to_compare);
|
|
|
|
static absl::string_view GetFirstChunk(const Cord& c);
|
|
|
|
static absl::string_view GetFirstChunk(absl::string_view sv);
|
|
|
|
|
|
|
|
// Returns a new reference to contents_.tree(), or steals an existing
|
|
|
|
// reference if called on an rvalue.
|
|
|
|
absl::cord_internal::CordRep* TakeRep() const&;
|
|
|
|
absl::cord_internal::CordRep* TakeRep() &&;
|
|
|
|
|
|
|
|
// Helper for Append()
|
|
|
|
template <typename C>
|
|
|
|
void AppendImpl(C&& src);
|
|
|
|
|
|
|
|
// Helper for AbslHashValue()
|
|
|
|
template <typename H>
|
|
|
|
H HashFragmented(H hash_state) const {
|
|
|
|
typename H::AbslInternalPiecewiseCombiner combiner;
|
|
|
|
ForEachChunk([&combiner, &hash_state](absl::string_view chunk) {
|
|
|
|
hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(),
|
|
|
|
chunk.size());
|
|
|
|
});
|
|
|
|
return H::combine(combiner.finalize(std::move(hash_state)), size());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
// allow a Cord to be logged
|
|
|
|
extern std::ostream& operator<<(std::ostream& out, const Cord& cord);
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------
|
|
|
|
// Internal details follow. Clients should ignore.
|
|
|
|
|
|
|
|
namespace cord_internal {
|
|
|
|
|
|
|
|
// Fast implementation of memmove for up to 15 bytes. This implementation is
|
|
|
|
// safe for overlapping regions. If nullify_tail is true, the destination is
|
|
|
|
// padded with '\0' up to 16 bytes.
|
|
|
|
inline void SmallMemmove(char* dst, const char* src, size_t n,
|
|
|
|
bool nullify_tail = false) {
|
|
|
|
if (n >= 8) {
|
|
|
|
assert(n <= 16);
|
|
|
|
uint64_t buf1;
|
|
|
|
uint64_t buf2;
|
|
|
|
memcpy(&buf1, src, 8);
|
|
|
|
memcpy(&buf2, src + n - 8, 8);
|
|
|
|
if (nullify_tail) {
|
|
|
|
memset(dst + 8, 0, 8);
|
|
|
|
}
|
|
|
|
memcpy(dst, &buf1, 8);
|
|
|
|
memcpy(dst + n - 8, &buf2, 8);
|
|
|
|
} else if (n >= 4) {
|
|
|
|
uint32_t buf1;
|
|
|
|
uint32_t buf2;
|
|
|
|
memcpy(&buf1, src, 4);
|
|
|
|
memcpy(&buf2, src + n - 4, 4);
|
|
|
|
if (nullify_tail) {
|
|
|
|
memset(dst + 4, 0, 4);
|
|
|
|
memset(dst + 8, 0, 8);
|
|
|
|
}
|
|
|
|
memcpy(dst, &buf1, 4);
|
|
|
|
memcpy(dst + n - 4, &buf2, 4);
|
|
|
|
} else {
|
|
|
|
if (n != 0) {
|
|
|
|
dst[0] = src[0];
|
|
|
|
dst[n / 2] = src[n / 2];
|
|
|
|
dst[n - 1] = src[n - 1];
|
|
|
|
}
|
|
|
|
if (nullify_tail) {
|
|
|
|
memset(dst + 8, 0, 8);
|
|
|
|
memset(dst + n, 0, 8);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ExternalRepReleaserPair {
|
|
|
|
CordRep* rep;
|
|
|
|
void* releaser_address;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Allocates a new external `CordRep` and returns a pointer to it and a pointer
|
|
|
|
// to `releaser_size` bytes where the desired releaser can be constructed.
|
|
|
|
// Expects `data` to be non-empty.
|
|
|
|
ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
|
|
|
|
absl::string_view data, ExternalReleaserInvoker invoker,
|
|
|
|
size_t releaser_size);
|
|
|
|
|
|
|
|
struct Rank1 {};
|
|
|
|
struct Rank0 : Rank1 {};
|
|
|
|
|
|
|
|
template <typename Releaser, typename = ::absl::base_internal::InvokeT<
|
|
|
|
Releaser, absl::string_view>>
|
|
|
|
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
|
|
|
|
::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Releaser,
|
|
|
|
typename = ::absl::base_internal::InvokeT<Releaser>>
|
|
|
|
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
|
|
|
|
::absl::base_internal::Invoke(std::forward<Releaser>(releaser));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
|
|
|
|
// to it, or `nullptr` if `data` was empty.
|
|
|
|
template <typename Releaser>
|
|
|
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
|
|
|
|
CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
|
|
|
|
static_assert(
|
|
|
|
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
|
|
|
|
alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__,
|
|
|
|
#else
|
|
|
|
alignof(Releaser) <= alignof(max_align_t),
|
|
|
|
#endif
|
|
|
|
"Releasers with alignment requirement greater than what is returned by "
|
|
|
|
"default `::operator new()` are not supported.");
|
|
|
|
|
|
|
|
using ReleaserType = absl::decay_t<Releaser>;
|
|
|
|
if (data.empty()) {
|
|
|
|
// Never create empty external nodes.
|
|
|
|
InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),
|
|
|
|
data);
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {
|
|
|
|
auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);
|
|
|
|
InvokeReleaser(Rank0{}, std::move(*my_releaser), d);
|
|
|
|
my_releaser->~ReleaserType();
|
|
|
|
return sizeof(Releaser);
|
|
|
|
};
|
|
|
|
|
|
|
|
ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser(
|
|
|
|
data, releaser_invoker, sizeof(releaser));
|
|
|
|
::new (external.releaser_address)
|
|
|
|
ReleaserType(std::forward<Releaser>(releaser));
|
|
|
|
return external.rep;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overload for function reference types that dispatches using a function
|
|
|
|
// pointer because there are no `alignof()` or `sizeof()` a function reference.
|
|
|
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
|
|
|
|
inline CordRep* NewExternalRep(absl::string_view data,
|
|
|
|
void (&releaser)(absl::string_view)) {
|
|
|
|
return NewExternalRep(data, &releaser);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace cord_internal
|
|
|
|
|
|
|
|
template <typename Releaser>
|
|
|
|
Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {
|
|
|
|
Cord cord;
|
|
|
|
cord.contents_.set_tree(::absl::cord_internal::NewExternalRep(
|
|
|
|
data, std::forward<Releaser>(releaser)));
|
|
|
|
return cord;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {
|
|
|
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {
|
|
|
|
memcpy(data_, src.data_, sizeof(data_));
|
|
|
|
memset(src.data_, 0, sizeof(data_));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
|
|
|
|
if (this == &src) {
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
if (!is_tree() && !src.is_tree()) {
|
|
|
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
AssignSlow(src);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=(
|
|
|
|
Cord::InlineRep&& src) noexcept {
|
|
|
|
if (is_tree()) {
|
|
|
|
ClearSlow();
|
|
|
|
}
|
|
|
|
memcpy(data_, src.data_, sizeof(data_));
|
|
|
|
memset(src.data_, 0, sizeof(data_));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {
|
|
|
|
if (rhs == this) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
Cord::InlineRep tmp;
|
|
|
|
cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_));
|
|
|
|
cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_));
|
|
|
|
cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline const char* Cord::InlineRep::data() const {
|
|
|
|
return is_tree() ? nullptr : data_;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {
|
|
|
|
if (is_tree()) {
|
|
|
|
absl::cord_internal::CordRep* rep;
|
|
|
|
memcpy(&rep, data_, sizeof(rep));
|
|
|
|
return rep;
|
|
|
|
} else {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; }
|
|
|
|
|
|
|
|
inline size_t Cord::InlineRep::size() const {
|
|
|
|
const char tag = data_[kMaxInline];
|
|
|
|
if (tag <= kMaxInline) return tag;
|
|
|
|
return static_cast<size_t>(tree()->length);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {
|
|
|
|
if (rep == nullptr) {
|
|
|
|
memset(data_, 0, sizeof(data_));
|
|
|
|
} else {
|
|
|
|
bool was_tree = is_tree();
|
|
|
|
memcpy(data_, &rep, sizeof(rep));
|
|
|
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
|
|
|
|
if (!was_tree) {
|
|
|
|
data_[kMaxInline] = kTreeFlag;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {
|
|
|
|
ABSL_ASSERT(is_tree());
|
|
|
|
if (ABSL_PREDICT_FALSE(rep == nullptr)) {
|
|
|
|
set_tree(rep);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
memcpy(data_, &rep, sizeof(rep));
|
|
|
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {
|
|
|
|
const char tag = data_[kMaxInline];
|
|
|
|
absl::cord_internal::CordRep* result = nullptr;
|
|
|
|
if (tag > kMaxInline) {
|
|
|
|
memcpy(&result, data_, sizeof(result));
|
|
|
|
}
|
|
|
|
memset(data_, 0, sizeof(data_)); // Clear the cord
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::InlineRep::CopyToArray(char* dst) const {
|
|
|
|
assert(!is_tree());
|
|
|
|
size_t n = data_[kMaxInline];
|
|
|
|
assert(n != 0);
|
|
|
|
cord_internal::SmallMemmove(dst, data_, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr inline Cord::Cord() noexcept {}
|
|
|
|
|
|
|
|
inline Cord& Cord::operator=(const Cord& x) {
|
|
|
|
contents_ = x.contents_;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}
|
|
|
|
|
|
|
|
inline Cord& Cord::operator=(Cord&& x) noexcept {
|
|
|
|
contents_ = std::move(x.contents_);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
|
|
inline Cord& Cord::operator=(T&& src) {
|
|
|
|
*this = absl::string_view(src);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline size_t Cord::size() const {
|
|
|
|
// Length is 1st field in str.rep_
|
|
|
|
return contents_.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::empty() const { return contents_.empty(); }
|
|
|
|
|
|
|
|
inline size_t Cord::EstimatedMemoryUsage() const {
|
|
|
|
size_t result = sizeof(Cord);
|
|
|
|
if (const absl::cord_internal::CordRep* rep = contents_.tree()) {
|
|
|
|
result += MemoryUsageAux(rep);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline absl::optional<absl::string_view> Cord::TryFlat() const {
|
|
|
|
absl::cord_internal::CordRep* rep = contents_.tree();
|
|
|
|
if (rep == nullptr) {
|
|
|
|
return absl::string_view(contents_.data(), contents_.size());
|
|
|
|
}
|
|
|
|
absl::string_view fragment;
|
|
|
|
if (GetFlatAux(rep, &fragment)) {
|
|
|
|
return fragment;
|
|
|
|
}
|
|
|
|
return absl::nullopt;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline absl::string_view Cord::Flatten() {
|
|
|
|
absl::cord_internal::CordRep* rep = contents_.tree();
|
|
|
|
if (rep == nullptr) {
|
|
|
|
return absl::string_view(contents_.data(), contents_.size());
|
|
|
|
} else {
|
|
|
|
absl::string_view already_flat_contents;
|
|
|
|
if (GetFlatAux(rep, &already_flat_contents)) {
|
|
|
|
return already_flat_contents;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FlattenSlowPath();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::Append(absl::string_view src) {
|
|
|
|
contents_.AppendArray(src.data(), src.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
|
|
inline void Cord::Append(T&& src) {
|
|
|
|
// Note that this function reserves the right to reuse the `string&&`'s
|
|
|
|
// memory and that it will do so in the future.
|
|
|
|
Append(absl::string_view(src));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
|
|
inline void Cord::Prepend(T&& src) {
|
|
|
|
// Note that this function reserves the right to reuse the `string&&`'s
|
|
|
|
// memory and that it will do so in the future.
|
|
|
|
Prepend(absl::string_view(src));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int Cord::Compare(const Cord& rhs) const {
|
|
|
|
if (!contents_.is_tree() && !rhs.contents_.is_tree()) {
|
|
|
|
return contents_.BitwiseCompare(rhs.contents_);
|
|
|
|
}
|
|
|
|
|
|
|
|
return CompareImpl(rhs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Does 'this' cord start/end with rhs
|
|
|
|
inline bool Cord::StartsWith(const Cord& rhs) const {
|
|
|
|
if (contents_.IsSame(rhs.contents_)) return true;
|
|
|
|
size_t rhs_size = rhs.size();
|
|
|
|
if (size() < rhs_size) return false;
|
|
|
|
return EqualsImpl(rhs, rhs_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::StartsWith(absl::string_view rhs) const {
|
|
|
|
size_t rhs_size = rhs.size();
|
|
|
|
if (size() < rhs_size) return false;
|
|
|
|
return EqualsImpl(rhs, rhs_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
|
|
|
|
: bytes_remaining_(cord->size()) {
|
|
|
|
if (cord->empty()) return;
|
|
|
|
if (cord->contents_.is_tree()) {
|
|
|
|
stack_of_right_children_.push_back(cord->contents_.tree());
|
|
|
|
operator++();
|
|
|
|
} else {
|
|
|
|
current_chunk_ = absl::string_view(cord->contents_.data(), cord->size());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {
|
|
|
|
ChunkIterator tmp(*this);
|
|
|
|
operator++();
|
|
|
|
return tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {
|
|
|
|
return bytes_remaining_ == other.bytes_remaining_;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {
|
|
|
|
return !(*this == other);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {
|
|
|
|
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
|
|
|
|
return current_chunk_;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {
|
|
|
|
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
|
|
|
|
return ¤t_chunk_;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {
|
|
|
|
assert(n < current_chunk_.size());
|
|
|
|
current_chunk_.remove_prefix(n);
|
|
|
|
bytes_remaining_ -= n;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {
|
|
|
|
if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {
|
|
|
|
RemoveChunkPrefix(n);
|
|
|
|
} else if (n != 0) {
|
|
|
|
AdvanceBytesSlowPath(n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator Cord::chunk_begin() const {
|
|
|
|
return ChunkIterator(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::begin() const {
|
|
|
|
return cord_->chunk_begin();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::end() const {
|
|
|
|
return cord_->chunk_end();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }
|
|
|
|
|
|
|
|
inline Cord::CharIterator& Cord::CharIterator::operator++() {
|
|
|
|
if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {
|
|
|
|
chunk_iterator_.RemoveChunkPrefix(1);
|
|
|
|
} else {
|
|
|
|
++chunk_iterator_;
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharIterator Cord::CharIterator::operator++(int) {
|
|
|
|
CharIterator tmp(*this);
|
|
|
|
operator++();
|
|
|
|
return tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::CharIterator::operator==(const CharIterator& other) const {
|
|
|
|
return chunk_iterator_ == other.chunk_iterator_;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {
|
|
|
|
return !(*this == other);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {
|
|
|
|
return *chunk_iterator_->data();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {
|
|
|
|
return chunk_iterator_->data();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {
|
|
|
|
assert(it != nullptr);
|
|
|
|
return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Cord::Advance(CharIterator* it, size_t n_bytes) {
|
|
|
|
assert(it != nullptr);
|
|
|
|
it->chunk_iterator_.AdvanceBytes(n_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {
|
|
|
|
return *it.chunk_iterator_;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharIterator Cord::char_begin() const {
|
|
|
|
return CharIterator(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }
|
|
|
|
|
|
|
|
inline Cord::CharIterator Cord::CharRange::begin() const {
|
|
|
|
return cord_->char_begin();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharIterator Cord::CharRange::end() const {
|
|
|
|
return cord_->char_end();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Cord::CharRange Cord::Chars() const { return CharRange(this); }
|
|
|
|
|
|
|
|
inline void Cord::ForEachChunk(
|
|
|
|
absl::FunctionRef<void(absl::string_view)> callback) const {
|
|
|
|
absl::cord_internal::CordRep* rep = contents_.tree();
|
|
|
|
if (rep == nullptr) {
|
|
|
|
callback(absl::string_view(contents_.data(), contents_.size()));
|
|
|
|
} else {
|
|
|
|
return ForEachChunkAux(rep, callback);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Nonmember Cord-to-Cord relational operarators.
|
|
|
|
inline bool operator==(const Cord& lhs, const Cord& rhs) {
|
|
|
|
if (lhs.contents_.IsSame(rhs.contents_)) return true;
|
|
|
|
size_t rhs_size = rhs.size();
|
|
|
|
if (lhs.size() != rhs_size) return false;
|
|
|
|
return lhs.EqualsImpl(rhs, rhs_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }
|
|
|
|
inline bool operator<(const Cord& x, const Cord& y) {
|
|
|
|
return x.Compare(y) < 0;
|
|
|
|
}
|
|
|
|
inline bool operator>(const Cord& x, const Cord& y) {
|
|
|
|
return x.Compare(y) > 0;
|
|
|
|
}
|
|
|
|
inline bool operator<=(const Cord& x, const Cord& y) {
|
|
|
|
return x.Compare(y) <= 0;
|
|
|
|
}
|
|
|
|
inline bool operator>=(const Cord& x, const Cord& y) {
|
|
|
|
return x.Compare(y) >= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Nonmember Cord-to-absl::string_view relational operators.
|
|
|
|
//
|
|
|
|
// Due to implicit conversions, these also enable comparisons of Cord with
|
|
|
|
// with std::string, ::string, and const char*.
|
|
|
|
inline bool operator==(const Cord& lhs, absl::string_view rhs) {
|
|
|
|
size_t lhs_size = lhs.size();
|
|
|
|
size_t rhs_size = rhs.size();
|
|
|
|
if (lhs_size != rhs_size) return false;
|
|
|
|
return lhs.EqualsImpl(rhs, rhs_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }
|
|
|
|
inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }
|
|
|
|
inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }
|
|
|
|
inline bool operator<(const Cord& x, absl::string_view y) {
|
|
|
|
return x.Compare(y) < 0;
|
|
|
|
}
|
|
|
|
inline bool operator<(absl::string_view x, const Cord& y) {
|
|
|
|
return y.Compare(x) > 0;
|
|
|
|
}
|
|
|
|
inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }
|
|
|
|
inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }
|
|
|
|
inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }
|
|
|
|
inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }
|
|
|
|
inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }
|
|
|
|
inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }
|
|
|
|
|
|
|
|
// Overload of swap for Cord. The use of non-const references is
|
|
|
|
// required. :(
|
|
|
|
inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); }
|
|
|
|
|
|
|
|
// Some internals exposed to test code.
|
|
|
|
namespace strings_internal {
|
|
|
|
class CordTestAccess {
|
|
|
|
public:
|
|
|
|
static size_t FlatOverhead();
|
|
|
|
static size_t MaxFlatLength();
|
|
|
|
static size_t SizeofCordRepConcat();
|
|
|
|
static size_t SizeofCordRepExternal();
|
|
|
|
static size_t SizeofCordRepSubstring();
|
|
|
|
static size_t FlatTagToLength(uint8_t tag);
|
|
|
|
static uint8_t LengthToTag(size_t s);
|
|
|
|
};
|
|
|
|
} // namespace strings_internal
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
#endif // ABSL_STRINGS_CORD_H_
|