Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
7.6 KiB
238 lines
7.6 KiB
3 years ago
|
// Copyright 2021 The Abseil Authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include <cstddef>
|
||
|
#include <cstdint>
|
||
|
|
||
|
#include "absl/base/attributes.h"
|
||
|
#include "absl/base/config.h"
|
||
|
#include "absl/container/inlined_vector.h"
|
||
|
#include "absl/strings/cord_analysis.h"
|
||
|
#include "absl/strings/internal/cord_internal.h"
|
||
|
#include "absl/strings/internal/cord_rep_btree.h"
|
||
|
#include "absl/strings/internal/cord_rep_crc.h"
|
||
|
#include "absl/strings/internal/cord_rep_flat.h"
|
||
|
#include "absl/strings/internal/cord_rep_ring.h"
|
||
|
//
|
||
|
#include "absl/base/macros.h"
|
||
|
#include "absl/base/port.h"
|
||
|
#include "absl/functional/function_ref.h"
|
||
|
|
||
|
namespace absl {
|
||
|
ABSL_NAMESPACE_BEGIN
|
||
|
namespace cord_internal {
|
||
|
namespace {
|
||
|
|
||
|
// Accounting mode for analyzing memory usage.
|
||
|
enum class Mode { kTotal, kFairShare };
|
||
|
|
||
|
// CordRepRef holds a `const CordRep*` reference in rep, and depending on mode,
|
||
|
// holds a 'fraction' representing a cumulative inverse refcount weight.
|
||
|
template <Mode mode>
|
||
|
struct CordRepRef {
|
||
|
// Instantiates a CordRepRef instance.
|
||
|
explicit CordRepRef(const CordRep* r) : rep(r) {}
|
||
|
|
||
|
// Creates a child reference holding the provided child.
|
||
|
// Overloaded to add cumulative reference count for kFairShare.
|
||
|
CordRepRef Child(const CordRep* child) const { return CordRepRef(child); }
|
||
|
|
||
|
const CordRep* rep;
|
||
|
};
|
||
|
|
||
|
// RawUsage holds the computed total number of bytes.
|
||
|
template <Mode mode>
|
||
|
struct RawUsage {
|
||
|
size_t total = 0;
|
||
|
|
||
|
// Add 'size' to total, ignoring the CordRepRef argument.
|
||
|
void Add(size_t size, CordRepRef<mode>) { total += size; }
|
||
|
};
|
||
|
|
||
|
// Returns n / refcount avoiding a div for the common refcount == 1.
|
||
|
template <typename refcount_t>
|
||
|
double MaybeDiv(double d, refcount_t refcount) {
|
||
|
return refcount == 1 ? d : d / refcount;
|
||
|
}
|
||
|
|
||
|
// Overloaded 'kFairShare' specialization for CordRepRef. This class holds a
|
||
|
// `fraction` value which represents a cumulative inverse refcount weight.
|
||
|
// For example, a top node with a reference count of 2 will have a fraction
|
||
|
// value of 1/2 = 0.5, representing the 'fair share' of memory it references.
|
||
|
// A node below such a node with a reference count of 5 then has a fraction of
|
||
|
// 0.5 / 5 = 0.1 representing the fair share of memory below that node, etc.
|
||
|
template <>
|
||
|
struct CordRepRef<Mode::kFairShare> {
|
||
|
// Creates a CordRepRef with the provided rep and top (parent) fraction.
|
||
|
explicit CordRepRef(const CordRep* r, double frac = 1.0)
|
||
|
: rep(r), fraction(MaybeDiv(frac, r->refcount.Get())) {}
|
||
|
|
||
|
// Returns a CordRepRef with a fraction of `this->fraction / child.refcount`
|
||
|
CordRepRef Child(const CordRep* child) const {
|
||
|
return CordRepRef(child, fraction);
|
||
|
}
|
||
|
|
||
|
const CordRep* rep;
|
||
|
double fraction;
|
||
|
};
|
||
|
|
||
|
// Overloaded 'kFairShare' specialization for RawUsage
|
||
|
template <>
|
||
|
struct RawUsage<Mode::kFairShare> {
|
||
|
double total = 0;
|
||
|
|
||
|
// Adds `size` multiplied by `rep.fraction` to the total size.
|
||
|
void Add(size_t size, CordRepRef<Mode::kFairShare> rep) {
|
||
|
total += static_cast<double>(size) * rep.fraction;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Returns true if the provided rep is a valid data edge.
|
||
|
bool IsDataEdge(const CordRep* rep) {
|
||
|
// The fast path is that `rep` is an EXTERNAL or FLAT node, making the below
|
||
|
// if a single, well predicted branch. We then repeat the FLAT or EXTERNAL
|
||
|
// check in the slow path the SUBSTRING check to optimize for the hot path.
|
||
|
if (rep->tag == EXTERNAL || rep->tag >= FLAT) return true;
|
||
|
if (rep->tag == SUBSTRING) rep = rep->substring()->child;
|
||
|
return rep->tag == EXTERNAL || rep->tag >= FLAT;
|
||
|
}
|
||
|
|
||
|
// Computes the estimated memory size of the provided data edge.
|
||
|
// External reps are assumed 'heap allocated at their exact size'.
|
||
|
template <Mode mode>
|
||
|
void AnalyzeDataEdge(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
|
||
|
assert(IsDataEdge(rep.rep));
|
||
|
|
||
|
// Consume all substrings
|
||
|
if (rep.rep->tag == SUBSTRING) {
|
||
|
raw_usage.Add(sizeof(CordRepSubstring), rep);
|
||
|
rep = rep.Child(rep.rep->substring()->child);
|
||
|
}
|
||
|
|
||
|
// Consume FLAT / EXTERNAL
|
||
|
const size_t size =
|
||
|
rep.rep->tag >= FLAT
|
||
|
? rep.rep->flat()->AllocatedSize()
|
||
|
: rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
|
||
|
raw_usage.Add(size, rep);
|
||
|
}
|
||
|
|
||
|
// Computes the memory size of the provided Concat tree.
|
||
|
template <Mode mode>
|
||
|
void AnalyzeConcat(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
|
||
|
absl::InlinedVector<CordRepRef<mode>, 47> pending;
|
||
|
|
||
|
while (rep.rep != nullptr) {
|
||
|
const CordRepConcat* concat = rep.rep->concat();
|
||
|
CordRepRef<mode> left = rep.Child(concat->left);
|
||
|
CordRepRef<mode> right = rep.Child(concat->right);
|
||
|
|
||
|
raw_usage.Add(sizeof(CordRepConcat), rep);
|
||
|
|
||
|
switch ((IsDataEdge(left.rep) ? 1 : 0) | (IsDataEdge(right.rep) ? 2 : 0)) {
|
||
|
case 0: // neither left or right are data edges
|
||
|
rep = left;
|
||
|
pending.push_back(right);
|
||
|
break;
|
||
|
case 1: // only left is a data edge
|
||
|
AnalyzeDataEdge(left, raw_usage);
|
||
|
rep = right;
|
||
|
break;
|
||
|
case 2: // only right is a data edge
|
||
|
AnalyzeDataEdge(right, raw_usage);
|
||
|
rep = left;
|
||
|
break;
|
||
|
case 3: // left and right are data edges
|
||
|
AnalyzeDataEdge(right, raw_usage);
|
||
|
AnalyzeDataEdge(left, raw_usage);
|
||
|
if (!pending.empty()) {
|
||
|
rep = pending.back();
|
||
|
pending.pop_back();
|
||
|
} else {
|
||
|
rep.rep = nullptr;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Computes the memory size of the provided Ring tree.
|
||
|
template <Mode mode>
|
||
|
void AnalyzeRing(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
|
||
|
const CordRepRing* ring = rep.rep->ring();
|
||
|
raw_usage.Add(CordRepRing::AllocSize(ring->capacity()), rep);
|
||
|
ring->ForEach([&](CordRepRing::index_type pos) {
|
||
|
AnalyzeDataEdge(rep.Child(ring->entry_child(pos)), raw_usage);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// Computes the memory size of the provided Btree tree.
|
||
|
template <Mode mode>
|
||
|
void AnalyzeBtree(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
|
||
|
raw_usage.Add(sizeof(CordRepBtree), rep);
|
||
|
const CordRepBtree* tree = rep.rep->btree();
|
||
|
if (tree->height() > 0) {
|
||
|
for (CordRep* edge : tree->Edges()) {
|
||
|
AnalyzeBtree(rep.Child(edge), raw_usage);
|
||
|
}
|
||
|
} else {
|
||
|
for (CordRep* edge : tree->Edges()) {
|
||
|
AnalyzeDataEdge(rep.Child(edge), raw_usage);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <Mode mode>
|
||
|
size_t GetEstimatedUsage(const CordRep* rep) {
|
||
|
// Zero initialized memory usage totals.
|
||
|
RawUsage<mode> raw_usage;
|
||
|
|
||
|
// Capture top level node and refcount into a CordRepRef.
|
||
|
CordRepRef<mode> repref(rep);
|
||
|
|
||
|
// Consume the top level CRC node if present.
|
||
|
if (repref.rep->tag == CRC) {
|
||
|
raw_usage.Add(sizeof(CordRepCrc), repref);
|
||
|
repref = repref.Child(repref.rep->crc()->child);
|
||
|
}
|
||
|
|
||
|
if (IsDataEdge(repref.rep)) {
|
||
|
AnalyzeDataEdge(repref, raw_usage);
|
||
|
} else if (repref.rep->tag == BTREE) {
|
||
|
AnalyzeBtree(repref, raw_usage);
|
||
|
} else if (repref.rep->tag == CONCAT) {
|
||
|
AnalyzeConcat(repref, raw_usage);
|
||
|
} else if (repref.rep->tag == RING) {
|
||
|
AnalyzeRing(repref, raw_usage);
|
||
|
} else {
|
||
|
assert(false);
|
||
|
}
|
||
|
|
||
|
return static_cast<size_t>(raw_usage.total);
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
size_t GetEstimatedMemoryUsage(const CordRep* rep) {
|
||
|
return GetEstimatedUsage<Mode::kTotal>(rep);
|
||
|
}
|
||
|
|
||
|
size_t GetEstimatedFairShareMemoryUsage(const CordRep* rep) {
|
||
|
return GetEstimatedUsage<Mode::kFairShare>(rep);
|
||
|
}
|
||
|
|
||
|
} // namespace cord_internal
|
||
|
ABSL_NAMESPACE_END
|
||
|
} // namespace absl
|