Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1032 lines
33 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/algorithm/container.h"
#include <functional>
#include <initializer_list>
#include <iterator>
#include <list>
#include <memory>
#include <ostream>
#include <random>
#include <set>
#include <unordered_set>
#include <utility>
#include <valarray>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/casts.h"
#include "absl/base/macros.h"
#include "absl/memory/memory.h"
#include "absl/types/span.h"
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Gt;
using ::testing::IsNull;
using ::testing::Lt;
using ::testing::Pointee;
using ::testing::Truly;
using ::testing::UnorderedElementsAre;
// Most of these tests just check that the code compiles, not that it
// does the right thing. That's fine since the functions just forward
// to the STL implementation.
class NonMutatingTest : public testing::Test {
protected:
std::unordered_set<int> container_ = {1, 2, 3};
std::list<int> sequence_ = {1, 2, 3};
std::vector<int> vector_ = {1, 2, 3};
int array_[3] = {1, 2, 3};
};
struct AccumulateCalls {
void operator()(int value) {
calls.push_back(value);
}
std::vector<int> calls;
};
bool Predicate(int value) { return value < 3; }
bool BinPredicate(int v1, int v2) { return v1 < v2; }
bool Equals(int v1, int v2) { return v1 == v2; }
bool IsOdd(int x) { return x % 2 != 0; }
TEST_F(NonMutatingTest, Distance) {
EXPECT_EQ(container_.size(), absl::c_distance(container_));
EXPECT_EQ(sequence_.size(), absl::c_distance(sequence_));
EXPECT_EQ(vector_.size(), absl::c_distance(vector_));
EXPECT_EQ(ABSL_ARRAYSIZE(array_), absl::c_distance(array_));
// Works with a temporary argument.
EXPECT_EQ(vector_.size(), absl::c_distance(std::vector<int>(vector_)));
}
TEST_F(NonMutatingTest, Distance_OverloadedBeginEnd) {
// Works with classes which have custom ADL-selected overloads of std::begin
// and std::end.
std::initializer_list<int> a = {1, 2, 3};
std::valarray<int> b = {1, 2, 3};
EXPECT_EQ(3, absl::c_distance(a));
EXPECT_EQ(3, absl::c_distance(b));
// It is assumed that other c_* functions use the same mechanism for
// ADL-selecting begin/end overloads.
}
TEST_F(NonMutatingTest, ForEach) {
AccumulateCalls c = absl::c_for_each(container_, AccumulateCalls());
// Don't rely on the unordered_set's order.
std::sort(c.calls.begin(), c.calls.end());
EXPECT_EQ(vector_, c.calls);
// Works with temporary container, too.
AccumulateCalls c2 =
absl::c_for_each(std::unordered_set<int>(container_), AccumulateCalls());
std::sort(c2.calls.begin(), c2.calls.end());
EXPECT_EQ(vector_, c2.calls);
}
TEST_F(NonMutatingTest, FindReturnsCorrectType) {
auto it = absl::c_find(container_, 3);
EXPECT_EQ(3, *it);
absl::c_find(absl::implicit_cast<const std::list<int>&>(sequence_), 3);
}
TEST_F(NonMutatingTest, FindIf) { absl::c_find_if(container_, Predicate); }
TEST_F(NonMutatingTest, FindIfNot) {
absl::c_find_if_not(container_, Predicate);
}
TEST_F(NonMutatingTest, FindEnd) {
absl::c_find_end(sequence_, vector_);
absl::c_find_end(vector_, sequence_);
}
TEST_F(NonMutatingTest, FindEndWithPredicate) {
absl::c_find_end(sequence_, vector_, BinPredicate);
absl::c_find_end(vector_, sequence_, BinPredicate);
}
TEST_F(NonMutatingTest, FindFirstOf) {
absl::c_find_first_of(container_, sequence_);
absl::c_find_first_of(sequence_, container_);
}
TEST_F(NonMutatingTest, FindFirstOfWithPredicate) {
absl::c_find_first_of(container_, sequence_, BinPredicate);
absl::c_find_first_of(sequence_, container_, BinPredicate);
}
TEST_F(NonMutatingTest, AdjacentFind) { absl::c_adjacent_find(sequence_); }
TEST_F(NonMutatingTest, AdjacentFindWithPredicate) {
absl::c_adjacent_find(sequence_, BinPredicate);
}
TEST_F(NonMutatingTest, Count) { EXPECT_EQ(1, absl::c_count(container_, 3)); }
TEST_F(NonMutatingTest, CountIf) {
EXPECT_EQ(2, absl::c_count_if(container_, Predicate));
const std::unordered_set<int>& const_container = container_;
EXPECT_EQ(2, absl::c_count_if(const_container, Predicate));
}
TEST_F(NonMutatingTest, Mismatch) {
absl::c_mismatch(container_, sequence_);
absl::c_mismatch(sequence_, container_);
}
TEST_F(NonMutatingTest, MismatchWithPredicate) {
absl::c_mismatch(container_, sequence_, BinPredicate);
absl::c_mismatch(sequence_, container_, BinPredicate);
}
TEST_F(NonMutatingTest, Equal) {
EXPECT_TRUE(absl::c_equal(vector_, sequence_));
EXPECT_TRUE(absl::c_equal(sequence_, vector_));
EXPECT_TRUE(absl::c_equal(sequence_, array_));
EXPECT_TRUE(absl::c_equal(array_, vector_));
// Test that behavior appropriately differs from that of equal().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_equal(vector_plus, sequence_));
EXPECT_FALSE(absl::c_equal(sequence_, vector_plus));
EXPECT_FALSE(absl::c_equal(array_, vector_plus));
}
TEST_F(NonMutatingTest, EqualWithPredicate) {
EXPECT_TRUE(absl::c_equal(vector_, sequence_, Equals));
EXPECT_TRUE(absl::c_equal(sequence_, vector_, Equals));
EXPECT_TRUE(absl::c_equal(array_, sequence_, Equals));
EXPECT_TRUE(absl::c_equal(vector_, array_, Equals));
// Test that behavior appropriately differs from that of equal().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_equal(vector_plus, sequence_, Equals));
EXPECT_FALSE(absl::c_equal(sequence_, vector_plus, Equals));
EXPECT_FALSE(absl::c_equal(vector_plus, array_, Equals));
}
TEST_F(NonMutatingTest, IsPermutation) {
auto vector_permut_ = vector_;
std::next_permutation(vector_permut_.begin(), vector_permut_.end());
EXPECT_TRUE(absl::c_is_permutation(vector_permut_, sequence_));
EXPECT_TRUE(absl::c_is_permutation(sequence_, vector_permut_));
// Test that behavior appropriately differs from that of is_permutation().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_is_permutation(vector_plus, sequence_));
EXPECT_FALSE(absl::c_is_permutation(sequence_, vector_plus));
}
TEST_F(NonMutatingTest, IsPermutationWithPredicate) {
auto vector_permut_ = vector_;
std::next_permutation(vector_permut_.begin(), vector_permut_.end());
EXPECT_TRUE(absl::c_is_permutation(vector_permut_, sequence_, Equals));
EXPECT_TRUE(absl::c_is_permutation(sequence_, vector_permut_, Equals));
// Test that behavior appropriately differs from that of is_permutation().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_is_permutation(vector_plus, sequence_, Equals));
EXPECT_FALSE(absl::c_is_permutation(sequence_, vector_plus, Equals));
}
TEST_F(NonMutatingTest, Search) {
absl::c_search(sequence_, vector_);
absl::c_search(vector_, sequence_);
absl::c_search(array_, sequence_);
}
TEST_F(NonMutatingTest, SearchWithPredicate) {
absl::c_search(sequence_, vector_, BinPredicate);
absl::c_search(vector_, sequence_, BinPredicate);
}
TEST_F(NonMutatingTest, SearchN) { absl::c_search_n(sequence_, 3, 1); }
TEST_F(NonMutatingTest, SearchNWithPredicate) {
absl::c_search_n(sequence_, 3, 1, BinPredicate);
}
TEST_F(NonMutatingTest, LowerBound) {
std::list<int>::iterator i = absl::c_lower_bound(sequence_, 3);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(2, std::distance(sequence_.begin(), i));
EXPECT_EQ(3, *i);
}
TEST_F(NonMutatingTest, LowerBoundWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
std::vector<int>::iterator i = absl::c_lower_bound(v, 3, std::greater<int>());
EXPECT_TRUE(i == v.begin());
EXPECT_EQ(3, *i);
}
TEST_F(NonMutatingTest, UpperBound) {
std::list<int>::iterator i = absl::c_upper_bound(sequence_, 1);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(1, std::distance(sequence_.begin(), i));
EXPECT_EQ(2, *i);
}
TEST_F(NonMutatingTest, UpperBoundWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
std::vector<int>::iterator i = absl::c_upper_bound(v, 1, std::greater<int>());
EXPECT_EQ(3, i - v.begin());
EXPECT_TRUE(i == v.end());
}
TEST_F(NonMutatingTest, EqualRange) {
std::pair<std::list<int>::iterator, std::list<int>::iterator> p =
absl::c_equal_range(sequence_, 2);
EXPECT_EQ(1, std::distance(sequence_.begin(), p.first));
EXPECT_EQ(2, std::distance(sequence_.begin(), p.second));
}
TEST_F(NonMutatingTest, EqualRangeArray) {
auto p = absl::c_equal_range(array_, 2);
EXPECT_EQ(1, std::distance(std::begin(array_), p.first));
EXPECT_EQ(2, std::distance(std::begin(array_), p.second));
}
TEST_F(NonMutatingTest, EqualRangeWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
std::pair<std::vector<int>::iterator, std::vector<int>::iterator> p =
absl::c_equal_range(v, 2, std::greater<int>());
EXPECT_EQ(1, std::distance(v.begin(), p.first));
EXPECT_EQ(2, std::distance(v.begin(), p.second));
}
TEST_F(NonMutatingTest, BinarySearch) {
EXPECT_TRUE(absl::c_binary_search(vector_, 2));
EXPECT_TRUE(absl::c_binary_search(std::vector<int>(vector_), 2));
}
TEST_F(NonMutatingTest, BinarySearchWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
EXPECT_TRUE(absl::c_binary_search(v, 2, std::greater<int>()));
EXPECT_TRUE(
absl::c_binary_search(std::vector<int>(v), 2, std::greater<int>()));
}
TEST_F(NonMutatingTest, MinElement) {
std::list<int>::iterator i = absl::c_min_element(sequence_);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 1);
}
TEST_F(NonMutatingTest, MinElementWithPredicate) {
std::list<int>::iterator i =
absl::c_min_element(sequence_, std::greater<int>());
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 3);
}
TEST_F(NonMutatingTest, MaxElement) {
std::list<int>::iterator i = absl::c_max_element(sequence_);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 3);
}
TEST_F(NonMutatingTest, MaxElementWithPredicate) {
std::list<int>::iterator i =
absl::c_max_element(sequence_, std::greater<int>());
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 1);
}
TEST_F(NonMutatingTest, LexicographicalCompare) {
EXPECT_FALSE(absl::c_lexicographical_compare(sequence_, sequence_));
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
EXPECT_TRUE(absl::c_lexicographical_compare(sequence_, v));
EXPECT_TRUE(absl::c_lexicographical_compare(std::list<int>(sequence_), v));
}
TEST_F(NonMutatingTest, LexicographicalCopmareWithPredicate) {
EXPECT_FALSE(absl::c_lexicographical_compare(sequence_, sequence_,
std::greater<int>()));
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
EXPECT_TRUE(
absl::c_lexicographical_compare(v, sequence_, std::greater<int>()));
EXPECT_TRUE(absl::c_lexicographical_compare(
std::vector<int>(v), std::list<int>(sequence_), std::greater<int>()));
}
TEST_F(NonMutatingTest, Includes) {
std::set<int> s(vector_.begin(), vector_.end());
s.insert(4);
EXPECT_TRUE(absl::c_includes(s, vector_));
}
TEST_F(NonMutatingTest, IncludesWithPredicate) {
std::vector<int> v = {3, 2, 1};
std::set<int, std::greater<int>> s(v.begin(), v.end());
s.insert(4);
EXPECT_TRUE(absl::c_includes(s, v, std::greater<int>()));
}
class NumericMutatingTest : public testing::Test {
protected:
std::list<int> list_ = {1, 2, 3};
std::vector<int> output_;
};
TEST_F(NumericMutatingTest, Iota) {
absl::c_iota(list_, 5);
std::list<int> expected{5, 6, 7};
EXPECT_EQ(list_, expected);
}
TEST_F(NonMutatingTest, Accumulate) {
EXPECT_EQ(absl::c_accumulate(sequence_, 4), 1 + 2 + 3 + 4);
}
TEST_F(NonMutatingTest, AccumulateWithBinaryOp) {
EXPECT_EQ(absl::c_accumulate(sequence_, 4, std::multiplies<int>()),
1 * 2 * 3 * 4);
}
TEST_F(NonMutatingTest, AccumulateLvalueInit) {
int lvalue = 4;
EXPECT_EQ(absl::c_accumulate(sequence_, lvalue), 1 + 2 + 3 + 4);
}
TEST_F(NonMutatingTest, AccumulateWithBinaryOpLvalueInit) {
int lvalue = 4;
EXPECT_EQ(absl::c_accumulate(sequence_, lvalue, std::multiplies<int>()),
1 * 2 * 3 * 4);
}
TEST_F(NonMutatingTest, InnerProduct) {
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, 1000),
1000 + 1 * 1 + 2 * 2 + 3 * 3);
}
TEST_F(NonMutatingTest, InnerProductWithBinaryOps) {
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, 10,
std::multiplies<int>(), std::plus<int>()),
10 * (1 + 1) * (2 + 2) * (3 + 3));
}
TEST_F(NonMutatingTest, InnerProductLvalueInit) {
int lvalue = 1000;
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, lvalue),
1000 + 1 * 1 + 2 * 2 + 3 * 3);
}
TEST_F(NonMutatingTest, InnerProductWithBinaryOpsLvalueInit) {
int lvalue = 10;
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, lvalue,
std::multiplies<int>(), std::plus<int>()),
10 * (1 + 1) * (2 + 2) * (3 + 3));
}
TEST_F(NumericMutatingTest, AdjacentDifference) {
auto last = absl::c_adjacent_difference(list_, std::back_inserter(output_));
*last = 1000;
std::vector<int> expected{1, 2 - 1, 3 - 2, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NumericMutatingTest, AdjacentDifferenceWithBinaryOp) {
auto last = absl::c_adjacent_difference(list_, std::back_inserter(output_),
std::multiplies<int>());
*last = 1000;
std::vector<int> expected{1, 2 * 1, 3 * 2, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NumericMutatingTest, PartialSum) {
auto last = absl::c_partial_sum(list_, std::back_inserter(output_));
*last = 1000;
std::vector<int> expected{1, 1 + 2, 1 + 2 + 3, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NumericMutatingTest, PartialSumWithBinaryOp) {
auto last = absl::c_partial_sum(list_, std::back_inserter(output_),
std::multiplies<int>());
*last = 1000;
std::vector<int> expected{1, 1 * 2, 1 * 2 * 3, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NonMutatingTest, LinearSearch) {
EXPECT_TRUE(absl::c_linear_search(container_, 3));
EXPECT_FALSE(absl::c_linear_search(container_, 4));
}
TEST_F(NonMutatingTest, AllOf) {
const std::vector<int>& v = vector_;
EXPECT_FALSE(absl::c_all_of(v, [](int x) { return x > 1; }));
EXPECT_TRUE(absl::c_all_of(v, [](int x) { return x > 0; }));
}
TEST_F(NonMutatingTest, AnyOf) {
const std::vector<int>& v = vector_;
EXPECT_TRUE(absl::c_any_of(v, [](int x) { return x > 2; }));
EXPECT_FALSE(absl::c_any_of(v, [](int x) { return x > 5; }));
}
TEST_F(NonMutatingTest, NoneOf) {
const std::vector<int>& v = vector_;
EXPECT_FALSE(absl::c_none_of(v, [](int x) { return x > 2; }));
EXPECT_TRUE(absl::c_none_of(v, [](int x) { return x > 5; }));
}
TEST_F(NonMutatingTest, MinMaxElementLess) {
std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
p = absl::c_minmax_element(vector_, std::less<int>());
EXPECT_TRUE(p.first == vector_.begin());
EXPECT_TRUE(p.second == vector_.begin() + 2);
}
TEST_F(NonMutatingTest, MinMaxElementGreater) {
std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
p = absl::c_minmax_element(vector_, std::greater<int>());
EXPECT_TRUE(p.first == vector_.begin() + 2);
EXPECT_TRUE(p.second == vector_.begin());
}
TEST_F(NonMutatingTest, MinMaxElementNoPredicate) {
std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
p = absl::c_minmax_element(vector_);
EXPECT_TRUE(p.first == vector_.begin());
EXPECT_TRUE(p.second == vector_.begin() + 2);
}
class SortingTest : public testing::Test {
protected:
std::list<int> sorted_ = {1, 2, 3, 4};
std::list<int> unsorted_ = {2, 4, 1, 3};
std::list<int> reversed_ = {4, 3, 2, 1};
};
TEST_F(SortingTest, IsSorted) {
EXPECT_TRUE(absl::c_is_sorted(sorted_));
EXPECT_FALSE(absl::c_is_sorted(unsorted_));
EXPECT_FALSE(absl::c_is_sorted(reversed_));
}
TEST_F(SortingTest, IsSortedWithPredicate) {
EXPECT_FALSE(absl::c_is_sorted(sorted_, std::greater<int>()));
EXPECT_FALSE(absl::c_is_sorted(unsorted_, std::greater<int>()));
EXPECT_TRUE(absl::c_is_sorted(reversed_, std::greater<int>()));
}
TEST_F(SortingTest, IsSortedUntil) {
EXPECT_EQ(1, *absl::c_is_sorted_until(unsorted_));
EXPECT_EQ(4, *absl::c_is_sorted_until(unsorted_, std::greater<int>()));
}
TEST_F(SortingTest, NthElement) {
std::vector<int> unsorted = {2, 4, 1, 3};
absl::c_nth_element(unsorted, unsorted.begin() + 2);
EXPECT_THAT(unsorted,
ElementsAre(Lt(3), Lt(3), 3, Gt(3)));
absl::c_nth_element(unsorted, unsorted.begin() + 2, std::greater<int>());
EXPECT_THAT(unsorted,
ElementsAre(Gt(2), Gt(2), 2, Lt(2)));
}
TEST(MutatingTest, IsPartitioned) {
EXPECT_TRUE(
absl::c_is_partitioned(std::vector<int>{1, 3, 5, 2, 4, 6}, IsOdd));
EXPECT_FALSE(
absl::c_is_partitioned(std::vector<int>{1, 2, 3, 4, 5, 6}, IsOdd));
EXPECT_FALSE(
absl::c_is_partitioned(std::vector<int>{2, 4, 6, 1, 3, 5}, IsOdd));
}
TEST(MutatingTest, Partition) {
std::vector<int> actual = {1, 2, 3, 4, 5};
absl::c_partition(actual, IsOdd);
EXPECT_THAT(actual, Truly([](const std::vector<int>& c) {
return absl::c_is_partitioned(c, IsOdd);
}));
}
TEST(MutatingTest, StablePartition) {
std::vector<int> actual = {1, 2, 3, 4, 5};
absl::c_stable_partition(actual, IsOdd);
EXPECT_THAT(actual, ElementsAre(1, 3, 5, 2, 4));
}
TEST(MutatingTest, PartitionCopy) {
const std::vector<int> initial = {1, 2, 3, 4, 5};
std::vector<int> odds, evens;
auto ends = absl::c_partition_copy(initial, back_inserter(odds),
back_inserter(evens), IsOdd);
*ends.first = 7;
*ends.second = 6;
EXPECT_THAT(odds, ElementsAre(1, 3, 5, 7));
EXPECT_THAT(evens, ElementsAre(2, 4, 6));
}
TEST(MutatingTest, PartitionPoint) {
const std::vector<int> initial = {1, 3, 5, 2, 4};
auto middle = absl::c_partition_point(initial, IsOdd);
EXPECT_EQ(2, *middle);
}
TEST(MutatingTest, CopyMiddle) {
const std::vector<int> initial = {4, -1, -2, -3, 5};
const std::list<int> input = {1, 2, 3};
const std::vector<int> expected = {4, 1, 2, 3, 5};
std::list<int> test_list(initial.begin(), initial.end());
absl::c_copy(input, ++test_list.begin());
EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
std::vector<int> test_vector = initial;
absl::c_copy(input, test_vector.begin() + 1);
EXPECT_EQ(expected, test_vector);
}
TEST(MutatingTest, CopyFrontInserter) {
const std::list<int> initial = {4, 5};
const std::list<int> input = {1, 2, 3};
const std::list<int> expected = {3, 2, 1, 4, 5};
std::list<int> test_list = initial;
absl::c_copy(input, std::front_inserter(test_list));
EXPECT_EQ(expected, test_list);
}
TEST(MutatingTest, CopyBackInserter) {
const std::vector<int> initial = {4, 5};
const std::list<int> input = {1, 2, 3};
const std::vector<int> expected = {4, 5, 1, 2, 3};
std::list<int> test_list(initial.begin(), initial.end());
absl::c_copy(input, std::back_inserter(test_list));
EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
std::vector<int> test_vector = initial;
absl::c_copy(input, std::back_inserter(test_vector));
EXPECT_EQ(expected, test_vector);
}
TEST(MutatingTest, CopyN) {
const std::vector<int> initial = {1, 2, 3, 4, 5};
const std::vector<int> expected = {1, 2};
std::vector<int> actual;
absl::c_copy_n(initial, 2, back_inserter(actual));
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, CopyIf) {
const std::list<int> input = {1, 2, 3};
std::vector<int> output;
absl::c_copy_if(input, std::back_inserter(output),
[](int i) { return i != 2; });
EXPECT_THAT(output, ElementsAre(1, 3));
}
TEST(MutatingTest, CopyBackward) {
std::vector<int> actual = {1, 2, 3, 4, 5};
std::vector<int> expected = {1, 2, 1, 2, 3};
absl::c_copy_backward(absl::MakeSpan(actual.data(), 3), actual.end());
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, Move) {
std::vector<std::unique_ptr<int>> src;
src.emplace_back(absl::make_unique<int>(1));
src.emplace_back(absl::make_unique<int>(2));
src.emplace_back(absl::make_unique<int>(3));
src.emplace_back(absl::make_unique<int>(4));
src.emplace_back(absl::make_unique<int>(5));
std::vector<std::unique_ptr<int>> dest = {};
absl::c_move(src, std::back_inserter(dest));
EXPECT_THAT(src, Each(IsNull()));
EXPECT_THAT(dest, ElementsAre(Pointee(1), Pointee(2), Pointee(3), Pointee(4),
Pointee(5)));
}
TEST(MutatingTest, MoveBackward) {
std::vector<std::unique_ptr<int>> actual;
actual.emplace_back(absl::make_unique<int>(1));
actual.emplace_back(absl::make_unique<int>(2));
actual.emplace_back(absl::make_unique<int>(3));
actual.emplace_back(absl::make_unique<int>(4));
actual.emplace_back(absl::make_unique<int>(5));
auto subrange = absl::MakeSpan(actual.data(), 3);
absl::c_move_backward(subrange, actual.end());
EXPECT_THAT(actual, ElementsAre(IsNull(), IsNull(), Pointee(1), Pointee(2),
Pointee(3)));
}
TEST(MutatingTest, MoveWithRvalue) {
auto MakeRValueSrc = [] {
std::vector<std::unique_ptr<int>> src;
src.emplace_back(absl::make_unique<int>(1));
src.emplace_back(absl::make_unique<int>(2));
src.emplace_back(absl::make_unique<int>(3));
return src;
};
std::vector<std::unique_ptr<int>> dest = MakeRValueSrc();
absl::c_move(MakeRValueSrc(), std::back_inserter(dest));
EXPECT_THAT(dest, ElementsAre(Pointee(1), Pointee(2), Pointee(3), Pointee(1),
Pointee(2), Pointee(3)));
}
TEST(MutatingTest, SwapRanges) {
std::vector<int> odds = {2, 4, 6};
std::vector<int> evens = {1, 3, 5};
absl::c_swap_ranges(odds, evens);
EXPECT_THAT(odds, ElementsAre(1, 3, 5));
EXPECT_THAT(evens, ElementsAre(2, 4, 6));
}
TEST_F(NonMutatingTest, Transform) {
std::vector<int> x{0, 2, 4}, y, z;
auto end = absl::c_transform(x, back_inserter(y), std::negate<int>());
EXPECT_EQ(std::vector<int>({0, -2, -4}), y);
*end = 7;
EXPECT_EQ(std::vector<int>({0, -2, -4, 7}), y);
y = {1, 3, 0};
end = absl::c_transform(x, y, back_inserter(z), std::plus<int>());
EXPECT_EQ(std::vector<int>({1, 5, 4}), z);
*end = 7;
EXPECT_EQ(std::vector<int>({1, 5, 4, 7}), z);
}
TEST(MutatingTest, Replace) {
const std::vector<int> initial = {1, 2, 3, 1, 4, 5};
const std::vector<int> expected = {4, 2, 3, 4, 4, 5};
std::vector<int> test_vector = initial;
absl::c_replace(test_vector, 1, 4);
EXPECT_EQ(expected, test_vector);
std::list<int> test_list(initial.begin(), initial.end());
absl::c_replace(test_list, 1, 4);
EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
}
TEST(MutatingTest, ReplaceIf) {
std::vector<int> actual = {1, 2, 3, 4, 5};
const std::vector<int> expected = {0, 2, 0, 4, 0};
absl::c_replace_if(actual, IsOdd, 0);
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, ReplaceCopy) {
const std::vector<int> initial = {1, 2, 3, 1, 4, 5};
const std::vector<int> expected = {4, 2, 3, 4, 4, 5};
std::vector<int> actual;
absl::c_replace_copy(initial, back_inserter(actual), 1, 4);
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, Sort) {
std::vector<int> test_vector = {2, 3, 1, 4};
absl::c_sort(test_vector);
EXPECT_THAT(test_vector, ElementsAre(1, 2, 3, 4));
}
TEST(MutatingTest, SortWithPredicate) {
std::vector<int> test_vector = {2, 3, 1, 4};
absl::c_sort(test_vector, std::greater<int>());
EXPECT_THAT(test_vector, ElementsAre(4, 3, 2, 1));
}
// For absl::c_stable_sort tests. Needs an operator< that does not cover all
// fields so that the test can check the sort preserves order of equal elements.
struct Element {
int key;
int value;
friend bool operator<(const Element& e1, const Element& e2) {
return e1.key < e2.key;
}
// Make gmock print useful diagnostics.
friend std::ostream& operator<<(std::ostream& o, const Element& e) {
return o << "{" << e.key << ", " << e.value << "}";
}
};
MATCHER_P2(IsElement, key, value, "") {
return arg.key == key && arg.value == value;
}
TEST(MutatingTest, StableSort) {
std::vector<Element> test_vector = {{1, 1}, {2, 1}, {2, 0}, {1, 0}, {2, 2}};
absl::c_stable_sort(test_vector);
EXPECT_THAT(
test_vector,
ElementsAre(IsElement(1, 1), IsElement(1, 0), IsElement(2, 1),
IsElement(2, 0), IsElement(2, 2)));
}
TEST(MutatingTest, StableSortWithPredicate) {
std::vector<Element> test_vector = {{1, 1}, {2, 1}, {2, 0}, {1, 0}, {2, 2}};
absl::c_stable_sort(test_vector, [](const Element& e1, const Element& e2) {
return e2 < e1;
});
EXPECT_THAT(
test_vector,
ElementsAre(IsElement(2, 1), IsElement(2, 0), IsElement(2, 2),
IsElement(1, 1), IsElement(1, 0)));
}
TEST(MutatingTest, ReplaceCopyIf) {
const std::vector<int> initial = {1, 2, 3, 4, 5};
const std::vector<int> expected = {0, 2, 0, 4, 0};
std::vector<int> actual;
absl::c_replace_copy_if(initial, back_inserter(actual), IsOdd, 0);
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, Fill) {
std::vector<int> actual(5);
absl::c_fill(actual, 1);
EXPECT_THAT(actual, ElementsAre(1, 1, 1, 1, 1));
}
TEST(MutatingTest, FillN) {
std::vector<int> actual(5, 0);
absl::c_fill_n(actual, 2, 1);
EXPECT_THAT(actual, ElementsAre(1, 1, 0, 0, 0));
}
TEST(MutatingTest, Generate) {
std::vector<int> actual(5);
int x = 0;
absl::c_generate(actual, [&x]() { return ++x; });
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, GenerateN) {
std::vector<int> actual(5, 0);
int x = 0;
absl::c_generate_n(actual, 3, [&x]() { return ++x; });
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 0, 0));
}
TEST(MutatingTest, RemoveCopy) {
std::vector<int> actual;
absl::c_remove_copy(std::vector<int>{1, 2, 3}, back_inserter(actual), 2);
EXPECT_THAT(actual, ElementsAre(1, 3));
}
TEST(MutatingTest, RemoveCopyIf) {
std::vector<int> actual;
absl::c_remove_copy_if(std::vector<int>{1, 2, 3}, back_inserter(actual),
IsOdd);
EXPECT_THAT(actual, ElementsAre(2));
}
TEST(MutatingTest, UniqueCopy) {
std::vector<int> actual;
absl::c_unique_copy(std::vector<int>{1, 2, 2, 2, 3, 3, 2},
back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 2));
}
TEST(MutatingTest, UniqueCopyWithPredicate) {
std::vector<int> actual;
absl::c_unique_copy(std::vector<int>{1, 2, 3, -1, -2, -3, 1},
back_inserter(actual),
[](int x, int y) { return (x < 0) == (y < 0); });
EXPECT_THAT(actual, ElementsAre(1, -1, 1));
}
TEST(MutatingTest, Reverse) {
std::vector<int> test_vector = {1, 2, 3, 4};
absl::c_reverse(test_vector);
EXPECT_THAT(test_vector, ElementsAre(4, 3, 2, 1));
std::list<int> test_list = {1, 2, 3, 4};
absl::c_reverse(test_list);
EXPECT_THAT(test_list, ElementsAre(4, 3, 2, 1));
}
TEST(MutatingTest, ReverseCopy) {
std::vector<int> actual;
absl::c_reverse_copy(std::vector<int>{1, 2, 3, 4}, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(4, 3, 2, 1));
}
TEST(MutatingTest, Rotate) {
std::vector<int> actual = {1, 2, 3, 4};
auto it = absl::c_rotate(actual, actual.begin() + 2);
EXPECT_THAT(actual, testing::ElementsAreArray({3, 4, 1, 2}));
EXPECT_EQ(*it, 1);
}
TEST(MutatingTest, RotateCopy) {
std::vector<int> initial = {1, 2, 3, 4};
std::vector<int> actual;
auto end =
absl::c_rotate_copy(initial, initial.begin() + 2, back_inserter(actual));
*end = 5;
EXPECT_THAT(actual, ElementsAre(3, 4, 1, 2, 5));
}
TEST(MutatingTest, Shuffle) {
std::vector<int> actual = {1, 2, 3, 4, 5};
absl::c_shuffle(actual, std::random_device());
EXPECT_THAT(actual, UnorderedElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, PartialSort) {
std::vector<int> sequence{5, 3, 42, 0};
absl::c_partial_sort(sequence, sequence.begin() + 2);
EXPECT_THAT(absl::MakeSpan(sequence.data(), 2), ElementsAre(0, 3));
absl::c_partial_sort(sequence, sequence.begin() + 2, std::greater<int>());
EXPECT_THAT(absl::MakeSpan(sequence.data(), 2), ElementsAre(42, 5));
}
TEST(MutatingTest, PartialSortCopy) {
const std::vector<int> initial = {5, 3, 42, 0};
std::vector<int> actual(2);
absl::c_partial_sort_copy(initial, actual);
EXPECT_THAT(actual, ElementsAre(0, 3));
absl::c_partial_sort_copy(initial, actual, std::greater<int>());
EXPECT_THAT(actual, ElementsAre(42, 5));
}
TEST(MutatingTest, Merge) {
std::vector<int> actual;
absl::c_merge(std::vector<int>{1, 3, 5}, std::vector<int>{2, 4},
back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, MergeWithComparator) {
std::vector<int> actual;
absl::c_merge(std::vector<int>{5, 3, 1}, std::vector<int>{4, 2},
back_inserter(actual), std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 4, 3, 2, 1));
}
TEST(MutatingTest, InplaceMerge) {
std::vector<int> actual = {1, 3, 5, 2, 4};
absl::c_inplace_merge(actual, actual.begin() + 3);
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, InplaceMergeWithComparator) {
std::vector<int> actual = {5, 3, 1, 4, 2};
absl::c_inplace_merge(actual, actual.begin() + 3, std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 4, 3, 2, 1));
}
class SetOperationsTest : public testing::Test {
protected:
std::vector<int> a_ = {1, 2, 3};
std::vector<int> b_ = {1, 3, 5};
std::vector<int> a_reversed_ = {3, 2, 1};
std::vector<int> b_reversed_ = {5, 3, 1};
};
TEST_F(SetOperationsTest, SetUnion) {
std::vector<int> actual;
absl::c_set_union(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 5));
}
TEST_F(SetOperationsTest, SetUnionWithComparator) {
std::vector<int> actual;
absl::c_set_union(a_reversed_, b_reversed_, back_inserter(actual),
std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 3, 2, 1));
}
TEST_F(SetOperationsTest, SetIntersection) {
std::vector<int> actual;
absl::c_set_intersection(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 3));
}
TEST_F(SetOperationsTest, SetIntersectionWithComparator) {
std::vector<int> actual;
absl::c_set_intersection(a_reversed_, b_reversed_, back_inserter(actual),
std::greater<int>());
EXPECT_THAT(actual, ElementsAre(3, 1));
}
TEST_F(SetOperationsTest, SetDifference) {
std::vector<int> actual;
absl::c_set_difference(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(2));
}
TEST_F(SetOperationsTest, SetDifferenceWithComparator) {
std::vector<int> actual;
absl::c_set_difference(a_reversed_, b_reversed_, back_inserter(actual),
std::greater<int>());
EXPECT_THAT(actual, ElementsAre(2));
}
TEST_F(SetOperationsTest, SetSymmetricDifference) {
std::vector<int> actual;
absl::c_set_symmetric_difference(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(2, 5));
}
TEST_F(SetOperationsTest, SetSymmetricDifferenceWithComparator) {
std::vector<int> actual;
absl::c_set_symmetric_difference(a_reversed_, b_reversed_,
back_inserter(actual), std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 2));
}
TEST(HeapOperationsTest, WithoutComparator) {
std::vector<int> heap = {1, 2, 3};
EXPECT_FALSE(absl::c_is_heap(heap));
absl::c_make_heap(heap);
EXPECT_TRUE(absl::c_is_heap(heap));
heap.push_back(4);
EXPECT_EQ(3, absl::c_is_heap_until(heap) - heap.begin());
absl::c_push_heap(heap);
EXPECT_EQ(4, heap[0]);
absl::c_pop_heap(heap);
EXPECT_EQ(4, heap[3]);
absl::c_make_heap(heap);
absl::c_sort_heap(heap);
EXPECT_THAT(heap, ElementsAre(1, 2, 3, 4));
EXPECT_FALSE(absl::c_is_heap(heap));
}
TEST(HeapOperationsTest, WithComparator) {
using greater = std::greater<int>;
std::vector<int> heap = {3, 2, 1};
EXPECT_FALSE(absl::c_is_heap(heap, greater()));
absl::c_make_heap(heap, greater());
EXPECT_TRUE(absl::c_is_heap(heap, greater()));
heap.push_back(0);
EXPECT_EQ(3, absl::c_is_heap_until(heap, greater()) - heap.begin());
absl::c_push_heap(heap, greater());
EXPECT_EQ(0, heap[0]);
absl::c_pop_heap(heap, greater());
EXPECT_EQ(0, heap[3]);
absl::c_make_heap(heap, greater());
absl::c_sort_heap(heap, greater());
EXPECT_THAT(heap, ElementsAre(3, 2, 1, 0));
EXPECT_FALSE(absl::c_is_heap(heap, greater()));
}
TEST(MutatingTest, PermutationOperations) {
std::vector<int> initial = {1, 2, 3, 4};
std::vector<int> permuted = initial;
absl::c_next_permutation(permuted);
EXPECT_TRUE(absl::c_is_permutation(initial, permuted));
EXPECT_TRUE(absl::c_is_permutation(initial, permuted, std::equal_to<int>()));
std::vector<int> permuted2 = initial;
absl::c_prev_permutation(permuted2, std::greater<int>());
EXPECT_EQ(permuted, permuted2);
absl::c_prev_permutation(permuted);
EXPECT_EQ(initial, permuted);
}
} // namespace