Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

366 lines
15 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/chi_square.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/macros.h"
using absl::random_internal::ChiSquare;
using absl::random_internal::ChiSquarePValue;
using absl::random_internal::ChiSquareValue;
using absl::random_internal::ChiSquareWithExpected;
namespace {
TEST(ChiSquare, Value) {
struct {
int line;
double chi_square;
int df;
double confidence;
} const specs[] = {
// Testing lookup at 1% confidence
{__LINE__, 0, 0, 0.01},
{__LINE__, 0.00016, 1, 0.01},
{__LINE__, 1.64650, 8, 0.01},
{__LINE__, 5.81221, 16, 0.01},
{__LINE__, 156.4319, 200, 0.01},
{__LINE__, 1121.3784, 1234, 0.01},
{__LINE__, 53557.1629, 54321, 0.01},
{__LINE__, 651662.6647, 654321, 0.01},
// Testing lookup at 99% confidence
{__LINE__, 0, 0, 0.99},
{__LINE__, 6.635, 1, 0.99},
{__LINE__, 20.090, 8, 0.99},
{__LINE__, 32.000, 16, 0.99},
{__LINE__, 249.4456, 200, 0.99},
{__LINE__, 1131.1573, 1023, 0.99},
{__LINE__, 1352.5038, 1234, 0.99},
{__LINE__, 55090.7356, 54321, 0.99},
{__LINE__, 656985.1514, 654321, 0.99},
// Testing lookup at 99.9% confidence
{__LINE__, 16.2659, 3, 0.999},
{__LINE__, 22.4580, 6, 0.999},
{__LINE__, 267.5409, 200, 0.999},
{__LINE__, 1168.5033, 1023, 0.999},
{__LINE__, 55345.1741, 54321, 0.999},
{__LINE__, 657861.7284, 654321, 0.999},
{__LINE__, 51.1772, 24, 0.999},
{__LINE__, 59.7003, 30, 0.999},
{__LINE__, 37.6984, 15, 0.999},
{__LINE__, 29.5898, 10, 0.999},
{__LINE__, 27.8776, 9, 0.999},
// Testing lookup at random confidences
{__LINE__, 0.000157088, 1, 0.01},
{__LINE__, 5.31852, 2, 0.93},
{__LINE__, 1.92256, 4, 0.25},
{__LINE__, 10.7709, 13, 0.37},
{__LINE__, 26.2514, 17, 0.93},
{__LINE__, 36.4799, 29, 0.84},
{__LINE__, 25.818, 31, 0.27},
{__LINE__, 63.3346, 64, 0.50},
{__LINE__, 196.211, 128, 0.9999},
{__LINE__, 215.21, 243, 0.10},
{__LINE__, 285.393, 256, 0.90},
{__LINE__, 984.504, 1024, 0.1923},
{__LINE__, 2043.85, 2048, 0.4783},
{__LINE__, 48004.6, 48273, 0.194},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.line);
// Verify all values are have at most a 1% relative error.
const double val = ChiSquareValue(spec.df, spec.confidence);
const double err = std::max(5e-6, spec.chi_square / 5e3); // 1 part in 5000
EXPECT_NEAR(spec.chi_square, val, err) << spec.line;
}
// Relaxed test for extreme values, from
// http://www.ciphersbyritter.com/JAVASCRP/NORMCHIK.HTM#ChiSquare
EXPECT_NEAR(49.2680, ChiSquareValue(100, 1e-6), 5); // 0.000'005 mark
EXPECT_NEAR(123.499, ChiSquareValue(200, 1e-6), 5); // 0.000'005 mark
EXPECT_NEAR(149.449, ChiSquareValue(100, 0.999), 0.01);
EXPECT_NEAR(161.318, ChiSquareValue(100, 0.9999), 0.01);
EXPECT_NEAR(172.098, ChiSquareValue(100, 0.99999), 0.01);
EXPECT_NEAR(381.426, ChiSquareValue(300, 0.999), 0.05);
EXPECT_NEAR(399.756, ChiSquareValue(300, 0.9999), 0.1);
EXPECT_NEAR(416.126, ChiSquareValue(300, 0.99999), 0.2);
}
TEST(ChiSquareTest, PValue) {
struct {
int line;
double pval;
double chi_square;
int df;
} static const specs[] = {
{__LINE__, 1, 0, 0},
{__LINE__, 0, 0.001, 0},
{__LINE__, 1.000, 0, 453},
{__LINE__, 0.134471, 7972.52, 7834},
{__LINE__, 0.203922, 28.32, 23},
{__LINE__, 0.737171, 48274, 48472},
{__LINE__, 0.444146, 583.1234, 579},
{__LINE__, 0.294814, 138.2, 130},
{__LINE__, 0.0816532, 12.63, 7},
{__LINE__, 0, 682.32, 67},
{__LINE__, 0.49405, 999, 999},
{__LINE__, 1.000, 0, 9999},
{__LINE__, 0.997477, 0.00001, 1},
{__LINE__, 0, 5823.21, 5040},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.line);
const double pval = ChiSquarePValue(spec.chi_square, spec.df);
EXPECT_NEAR(spec.pval, pval, 1e-3);
}
}
TEST(ChiSquareTest, CalcChiSquare) {
struct {
int line;
std::vector<int> expected;
std::vector<int> actual;
} const specs[] = {
{__LINE__,
{56, 234, 76, 1, 546, 1, 87, 345, 1, 234},
{2, 132, 4, 43, 234, 8, 345, 8, 236, 56}},
{__LINE__,
{123, 36, 234, 367, 345, 2, 456, 567, 234, 567},
{123, 56, 2345, 8, 345, 8, 2345, 23, 48, 267}},
{__LINE__,
{123, 234, 345, 456, 567, 678, 789, 890, 98, 76},
{123, 234, 345, 456, 567, 678, 789, 890, 98, 76}},
{__LINE__, {3, 675, 23, 86, 2, 8, 2}, {456, 675, 23, 86, 23, 65, 2}},
{__LINE__, {1}, {23}},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.line);
double chi_square = 0;
for (int i = 0; i < spec.expected.size(); ++i) {
const double diff = spec.actual[i] - spec.expected[i];
chi_square += (diff * diff) / spec.expected[i];
}
EXPECT_NEAR(chi_square,
ChiSquare(std::begin(spec.actual), std::end(spec.actual),
std::begin(spec.expected), std::end(spec.expected)),
1e-5);
}
}
TEST(ChiSquareTest, CalcChiSquareInt64) {
const int64_t data[3] = {910293487, 910292491, 910216780};
// $ python -c "import scipy.stats
// > print scipy.stats.chisquare([910293487, 910292491, 910216780])[0]"
// 4.25410123524
double sum = std::accumulate(std::begin(data), std::end(data), double{0});
size_t n = std::distance(std::begin(data), std::end(data));
double a = ChiSquareWithExpected(std::begin(data), std::end(data), sum / n);
EXPECT_NEAR(4.254101, a, 1e-6);
// ... Or with known values.
double b =
ChiSquareWithExpected(std::begin(data), std::end(data), 910267586.0);
EXPECT_NEAR(4.254101, b, 1e-6);
}
TEST(ChiSquareTest, TableData) {
// Test data from
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
// 0.90 0.95 0.975 0.99 0.999
const double data[100][5] = {
/* 1*/ {2.706, 3.841, 5.024, 6.635, 10.828},
/* 2*/ {4.605, 5.991, 7.378, 9.210, 13.816},
/* 3*/ {6.251, 7.815, 9.348, 11.345, 16.266},
/* 4*/ {7.779, 9.488, 11.143, 13.277, 18.467},
/* 5*/ {9.236, 11.070, 12.833, 15.086, 20.515},
/* 6*/ {10.645, 12.592, 14.449, 16.812, 22.458},
/* 7*/ {12.017, 14.067, 16.013, 18.475, 24.322},
/* 8*/ {13.362, 15.507, 17.535, 20.090, 26.125},
/* 9*/ {14.684, 16.919, 19.023, 21.666, 27.877},
/*10*/ {15.987, 18.307, 20.483, 23.209, 29.588},
/*11*/ {17.275, 19.675, 21.920, 24.725, 31.264},
/*12*/ {18.549, 21.026, 23.337, 26.217, 32.910},
/*13*/ {19.812, 22.362, 24.736, 27.688, 34.528},
/*14*/ {21.064, 23.685, 26.119, 29.141, 36.123},
/*15*/ {22.307, 24.996, 27.488, 30.578, 37.697},
/*16*/ {23.542, 26.296, 28.845, 32.000, 39.252},
/*17*/ {24.769, 27.587, 30.191, 33.409, 40.790},
/*18*/ {25.989, 28.869, 31.526, 34.805, 42.312},
/*19*/ {27.204, 30.144, 32.852, 36.191, 43.820},
/*20*/ {28.412, 31.410, 34.170, 37.566, 45.315},
/*21*/ {29.615, 32.671, 35.479, 38.932, 46.797},
/*22*/ {30.813, 33.924, 36.781, 40.289, 48.268},
/*23*/ {32.007, 35.172, 38.076, 41.638, 49.728},
/*24*/ {33.196, 36.415, 39.364, 42.980, 51.179},
/*25*/ {34.382, 37.652, 40.646, 44.314, 52.620},
/*26*/ {35.563, 38.885, 41.923, 45.642, 54.052},
/*27*/ {36.741, 40.113, 43.195, 46.963, 55.476},
/*28*/ {37.916, 41.337, 44.461, 48.278, 56.892},
/*29*/ {39.087, 42.557, 45.722, 49.588, 58.301},
/*30*/ {40.256, 43.773, 46.979, 50.892, 59.703},
/*31*/ {41.422, 44.985, 48.232, 52.191, 61.098},
/*32*/ {42.585, 46.194, 49.480, 53.486, 62.487},
/*33*/ {43.745, 47.400, 50.725, 54.776, 63.870},
/*34*/ {44.903, 48.602, 51.966, 56.061, 65.247},
/*35*/ {46.059, 49.802, 53.203, 57.342, 66.619},
/*36*/ {47.212, 50.998, 54.437, 58.619, 67.985},
/*37*/ {48.363, 52.192, 55.668, 59.893, 69.347},
/*38*/ {49.513, 53.384, 56.896, 61.162, 70.703},
/*39*/ {50.660, 54.572, 58.120, 62.428, 72.055},
/*40*/ {51.805, 55.758, 59.342, 63.691, 73.402},
/*41*/ {52.949, 56.942, 60.561, 64.950, 74.745},
/*42*/ {54.090, 58.124, 61.777, 66.206, 76.084},
/*43*/ {55.230, 59.304, 62.990, 67.459, 77.419},
/*44*/ {56.369, 60.481, 64.201, 68.710, 78.750},
/*45*/ {57.505, 61.656, 65.410, 69.957, 80.077},
/*46*/ {58.641, 62.830, 66.617, 71.201, 81.400},
/*47*/ {59.774, 64.001, 67.821, 72.443, 82.720},
/*48*/ {60.907, 65.171, 69.023, 73.683, 84.037},
/*49*/ {62.038, 66.339, 70.222, 74.919, 85.351},
/*50*/ {63.167, 67.505, 71.420, 76.154, 86.661},
/*51*/ {64.295, 68.669, 72.616, 77.386, 87.968},
/*52*/ {65.422, 69.832, 73.810, 78.616, 89.272},
/*53*/ {66.548, 70.993, 75.002, 79.843, 90.573},
/*54*/ {67.673, 72.153, 76.192, 81.069, 91.872},
/*55*/ {68.796, 73.311, 77.380, 82.292, 93.168},
/*56*/ {69.919, 74.468, 78.567, 83.513, 94.461},
/*57*/ {71.040, 75.624, 79.752, 84.733, 95.751},
/*58*/ {72.160, 76.778, 80.936, 85.950, 97.039},
/*59*/ {73.279, 77.931, 82.117, 87.166, 98.324},
/*60*/ {74.397, 79.082, 83.298, 88.379, 99.607},
/*61*/ {75.514, 80.232, 84.476, 89.591, 100.888},
/*62*/ {76.630, 81.381, 85.654, 90.802, 102.166},
/*63*/ {77.745, 82.529, 86.830, 92.010, 103.442},
/*64*/ {78.860, 83.675, 88.004, 93.217, 104.716},
/*65*/ {79.973, 84.821, 89.177, 94.422, 105.988},
/*66*/ {81.085, 85.965, 90.349, 95.626, 107.258},
/*67*/ {82.197, 87.108, 91.519, 96.828, 108.526},
/*68*/ {83.308, 88.250, 92.689, 98.028, 109.791},
/*69*/ {84.418, 89.391, 93.856, 99.228, 111.055},
/*70*/ {85.527, 90.531, 95.023, 100.425, 112.317},
/*71*/ {86.635, 91.670, 96.189, 101.621, 113.577},
/*72*/ {87.743, 92.808, 97.353, 102.816, 114.835},
/*73*/ {88.850, 93.945, 98.516, 104.010, 116.092},
/*74*/ {89.956, 95.081, 99.678, 105.202, 117.346},
/*75*/ {91.061, 96.217, 100.839, 106.393, 118.599},
/*76*/ {92.166, 97.351, 101.999, 107.583, 119.850},
/*77*/ {93.270, 98.484, 103.158, 108.771, 121.100},
/*78*/ {94.374, 99.617, 104.316, 109.958, 122.348},
/*79*/ {95.476, 100.749, 105.473, 111.144, 123.594},
/*80*/ {96.578, 101.879, 106.629, 112.329, 124.839},
/*81*/ {97.680, 103.010, 107.783, 113.512, 126.083},
/*82*/ {98.780, 104.139, 108.937, 114.695, 127.324},
/*83*/ {99.880, 105.267, 110.090, 115.876, 128.565},
/*84*/ {100.980, 106.395, 111.242, 117.057, 129.804},
/*85*/ {102.079, 107.522, 112.393, 118.236, 131.041},
/*86*/ {103.177, 108.648, 113.544, 119.414, 132.277},
/*87*/ {104.275, 109.773, 114.693, 120.591, 133.512},
/*88*/ {105.372, 110.898, 115.841, 121.767, 134.746},
/*89*/ {106.469, 112.022, 116.989, 122.942, 135.978},
/*90*/ {107.565, 113.145, 118.136, 124.116, 137.208},
/*91*/ {108.661, 114.268, 119.282, 125.289, 138.438},
/*92*/ {109.756, 115.390, 120.427, 126.462, 139.666},
/*93*/ {110.850, 116.511, 121.571, 127.633, 140.893},
/*94*/ {111.944, 117.632, 122.715, 128.803, 142.119},
/*95*/ {113.038, 118.752, 123.858, 129.973, 143.344},
/*96*/ {114.131, 119.871, 125.000, 131.141, 144.567},
/*97*/ {115.223, 120.990, 126.141, 132.309, 145.789},
/*98*/ {116.315, 122.108, 127.282, 133.476, 147.010},
/*99*/ {117.407, 123.225, 128.422, 134.642, 148.230},
/*100*/ {118.498, 124.342, 129.561, 135.807, 149.449}
/**/};
// 0.90 0.95 0.975 0.99 0.999
for (int i = 0; i < ABSL_ARRAYSIZE(data); i++) {
const double E = 0.0001;
EXPECT_NEAR(ChiSquarePValue(data[i][0], i + 1), 0.10, E)
<< i << " " << data[i][0];
EXPECT_NEAR(ChiSquarePValue(data[i][1], i + 1), 0.05, E)
<< i << " " << data[i][1];
EXPECT_NEAR(ChiSquarePValue(data[i][2], i + 1), 0.025, E)
<< i << " " << data[i][2];
EXPECT_NEAR(ChiSquarePValue(data[i][3], i + 1), 0.01, E)
<< i << " " << data[i][3];
EXPECT_NEAR(ChiSquarePValue(data[i][4], i + 1), 0.001, E)
<< i << " " << data[i][4];
const double F = 0.1;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.90), data[i][0], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.95), data[i][1], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.975), data[i][2], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.99), data[i][3], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.999), data[i][4], F) << i;
}
}
TEST(ChiSquareTest, ChiSquareTwoIterator) {
// Test data from http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm
// Null-hypothesis: This data is normally distributed.
const int counts[10] = {6, 6, 18, 33, 38, 38, 28, 21, 9, 3};
const double expected[10] = {4.6, 8.8, 18.4, 30.0, 38.2,
38.2, 30.0, 18.4, 8.8, 4.6};
double chi_square = ChiSquare(std::begin(counts), std::end(counts),
std::begin(expected), std::end(expected));
EXPECT_NEAR(chi_square, 2.69, 0.001);
// Degrees of freedom: 10 bins. two estimated parameters. = 10 - 2 - 1.
const int dof = 7;
// The critical value of 7, 95% => 14.067 (see above test)
double p_value_05 = ChiSquarePValue(14.067, dof);
EXPECT_NEAR(p_value_05, 0.05, 0.001); // 95%-ile p-value
double p_actual = ChiSquarePValue(chi_square, dof);
EXPECT_GT(p_actual, 0.05); // Accept the null hypothesis.
}
TEST(ChiSquareTest, DiceRolls) {
// Assume we are testing 102 fair dice rolls.
// Null-hypothesis: This data is fairly distributed.
//
// The dof value of 4, @95% = 9.488 (see above test)
// The dof value of 5, @95% = 11.070
const int rolls[6] = {22, 11, 17, 14, 20, 18};
double sum = std::accumulate(std::begin(rolls), std::end(rolls), double{0});
size_t n = std::distance(std::begin(rolls), std::end(rolls));
double a = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), sum / n);
EXPECT_NEAR(a, 4.70588, 1e-5);
EXPECT_LT(a, ChiSquareValue(4, 0.95));
double p_a = ChiSquarePValue(a, 4);
EXPECT_NEAR(p_a, 0.318828, 1e-5); // Accept the null hypothesis.
double b = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), 17.0);
EXPECT_NEAR(b, 4.70588, 1e-5);
EXPECT_LT(b, ChiSquareValue(5, 0.95));
double p_b = ChiSquarePValue(b, 5);
EXPECT_NEAR(p_b, 0.4528180, 1e-5); // Accept the null hypothesis.
}
} // namespace