|
|
|
// Copyright 2019 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "absl/profiling/internal/exponential_biased.h"
|
|
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "gmock/gmock.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
|
|
|
|
using ::testing::Ge;
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
namespace profiling_internal {
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
MATCHER_P2(IsBetween, a, b,
|
|
|
|
absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
|
|
|
|
" and ", b)) {
|
|
|
|
return a <= arg && arg <= b;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests of the quality of the random numbers generated
|
|
|
|
// This uses the Anderson Darling test for uniformity.
|
|
|
|
// See "Evaluating the Anderson-Darling Distribution" by Marsaglia
|
|
|
|
// for details.
|
|
|
|
|
|
|
|
// Short cut version of ADinf(z), z>0 (from Marsaglia)
|
|
|
|
// This returns the p-value for Anderson Darling statistic in
|
|
|
|
// the limit as n-> infinity. For finite n, apply the error fix below.
|
|
|
|
double AndersonDarlingInf(double z) {
|
|
|
|
if (z < 2) {
|
|
|
|
return exp(-1.2337141 / z) / sqrt(z) *
|
|
|
|
(2.00012 +
|
|
|
|
(0.247105 -
|
|
|
|
(0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
|
|
|
|
z) *
|
|
|
|
z);
|
|
|
|
}
|
|
|
|
return exp(
|
|
|
|
-exp(1.0776 -
|
|
|
|
(2.30695 -
|
|
|
|
(0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
|
|
|
|
z));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Corrects the approximation error in AndersonDarlingInf for small values of n
|
|
|
|
// Add this to AndersonDarlingInf to get a better approximation
|
|
|
|
// (from Marsaglia)
|
|
|
|
double AndersonDarlingErrFix(int n, double x) {
|
|
|
|
if (x > 0.8) {
|
|
|
|
return (-130.2137 +
|
|
|
|
(745.2337 -
|
|
|
|
(1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
|
|
|
|
x) /
|
|
|
|
n;
|
|
|
|
}
|
|
|
|
double cutoff = 0.01265 + 0.1757 / n;
|
|
|
|
if (x < cutoff) {
|
|
|
|
double t = x / cutoff;
|
|
|
|
t = sqrt(t) * (1 - t) * (49 * t - 102);
|
|
|
|
return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
|
|
|
|
} else {
|
|
|
|
double t = (x - cutoff) / (0.8 - cutoff);
|
|
|
|
t = -0.00022633 +
|
|
|
|
(6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
|
|
|
|
t;
|
|
|
|
return t * (0.04213 + 0.01365 / n) / n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the AndersonDarling p-value given n and the value of the statistic
|
|
|
|
double AndersonDarlingPValue(int n, double z) {
|
|
|
|
double ad = AndersonDarlingInf(z);
|
|
|
|
double errfix = AndersonDarlingErrFix(n, ad);
|
|
|
|
return ad + errfix;
|
|
|
|
}
|
|
|
|
|
|
|
|
double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
|
|
|
|
int n = random_sample.size();
|
|
|
|
double ad_sum = 0;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
ad_sum += (2 * i + 1) *
|
|
|
|
std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
|
|
|
|
}
|
|
|
|
double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum;
|
|
|
|
return ad_statistic;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests if the array of doubles is uniformly distributed.
|
|
|
|
// Returns the p-value of the Anderson Darling Statistic
|
|
|
|
// for the given set of sorted random doubles
|
|
|
|
// See "Evaluating the Anderson-Darling Distribution" by
|
|
|
|
// Marsaglia and Marsaglia for details.
|
|
|
|
double AndersonDarlingTest(const std::vector<double>& random_sample) {
|
|
|
|
double ad_statistic = AndersonDarlingStatistic(random_sample);
|
|
|
|
double p = AndersonDarlingPValue(random_sample.size(), ad_statistic);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) {
|
|
|
|
ExponentialBiased eb;
|
|
|
|
for (int runs = 0; runs < 10; ++runs) {
|
|
|
|
for (int flips = eb.GetSkipCount(1); flips > 0; --flips) {
|
|
|
|
printf("head...");
|
|
|
|
}
|
|
|
|
printf("tail\n");
|
|
|
|
}
|
|
|
|
int heads = 0;
|
|
|
|
for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) {
|
|
|
|
++heads;
|
|
|
|
}
|
|
|
|
printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ExponentialBiasedTest, SampleDemoWithStride) {
|
|
|
|
ExponentialBiased eb;
|
|
|
|
int stride = eb.GetStride(10);
|
|
|
|
int samples = 0;
|
|
|
|
for (int i = 0; i < 10000000; ++i) {
|
|
|
|
if (--stride == 0) {
|
|
|
|
++samples;
|
|
|
|
stride = eb.GetStride(10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Testing that NextRandom generates uniform random numbers. Applies the
|
|
|
|
// Anderson-Darling test for uniformity
|
|
|
|
TEST(ExponentialBiasedTest, TestNextRandom) {
|
|
|
|
for (auto n : std::vector<int>({
|
|
|
|
10, // Check short-range correlation
|
|
|
|
100, 1000,
|
|
|
|
10000 // Make sure there's no systemic error
|
|
|
|
})) {
|
|
|
|
uint64_t x = 1;
|
|
|
|
// This assumes that the prng returns 48 bit numbers
|
|
|
|
uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
|
|
|
|
// Initialize.
|
|
|
|
for (int i = 1; i <= 20; i++) {
|
|
|
|
x = ExponentialBiased::NextRandom(x);
|
|
|
|
}
|
|
|
|
std::vector<uint64_t> int_random_sample(n);
|
|
|
|
// Collect samples
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
int_random_sample[i] = x;
|
|
|
|
x = ExponentialBiased::NextRandom(x);
|
|
|
|
}
|
|
|
|
// First sort them...
|
|
|
|
std::sort(int_random_sample.begin(), int_random_sample.end());
|
|
|
|
std::vector<double> random_sample(n);
|
|
|
|
// Convert them to uniform randoms (in the range [0,1])
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
random_sample[i] =
|
|
|
|
static_cast<double>(int_random_sample[i]) / max_prng_value;
|
|
|
|
}
|
|
|
|
// Now compute the Anderson-Darling statistic
|
|
|
|
double ad_pvalue = AndersonDarlingTest(random_sample);
|
|
|
|
EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
|
|
|
|
<< "prng is not uniform: n = " << n << " p = " << ad_pvalue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The generator needs to be available as a thread_local and as a static
|
|
|
|
// variable.
|
|
|
|
TEST(ExponentialBiasedTest, InitializationModes) {
|
|
|
|
ABSL_CONST_INIT static ExponentialBiased eb_static;
|
|
|
|
EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0));
|
|
|
|
|
|
|
|
#ifdef ABSL_HAVE_THREAD_LOCAL
|
|
|
|
thread_local ExponentialBiased eb_thread;
|
|
|
|
EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
ExponentialBiased eb_stack;
|
|
|
|
EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
} // namespace profiling_internal
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|