Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

303 lines
9.1 KiB

//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains :int128 implementation details that depend on internal
// representation when ABSL_HAVE_INTRINSIC_INT128 is defined. This file is
Export of internal Abseil changes. -- 636137f6f0de910691a3950387fefacfa4909fb8 by Abseil Team <absl-team@google.com>: Add move semantics to absl::container_internal::CompressedTuple PiperOrigin-RevId: 225394165 -- 43da91e4f95a196b2e6b76f1c2f4158817b0ebb0 by Greg Falcon <gfalcon@google.com>: Add a constructor to allow for global absl::Mutex instances. This adds a new constexpr constructor to absl::Mutex, invoked with the absl::kConstInit tag value, which is intended to be used to construct Mutex instances with static storage duration. What's tricky about is absl::Mutex (like std::mutex) is not a trivially destructible class, so by the letter of the law, accessing a global Mutex instance after it is destroyed results in undefined behavior. Despite this, we take care in the destructor to not invalidate the memory layout of the Mutex. Using a kConstInit-constructed global Mutex after it is destroyed happens to work on the toolchains we use. Google relies heavily on this behavior internally. Code sanitizers that detect undefined behavior are able to notice use-after-free of globals, and might complain about this pattern. PiperOrigin-RevId: 225389447 -- 7b553a54bc6460cc7008b028552e66799475ca64 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 225373389 -- fd0c722d217b3b509102274765ccb1a0b596cf46 by Abseil Team <absl-team@google.com>: Update absl/time/CMakeLists.txt to use new functions i.e. absl_cc_(library|test) PiperOrigin-RevId: 225246853 -- 9f8f3ba3b67a6d1ac4ecdc529c8b8eb0f02576d9 by Abseil Team <absl-team@google.com>: Update absl/synchronisation/CMakeLists.txt to use new functions i.e. absl_cc_(library|test) PiperOrigin-RevId: 225237980 -- a3fdd67dad2e596f804f5e100c8d3a74d8064faa by Abseil Team <absl-team@google.com>: Internal cleanup PiperOrigin-RevId: 225226813 -- 48fab23fb8cdca45e95da14fce0de56614d09c25 by Jon Cohen <cohenjon@google.com>: Use a shim #define for wchar_t in msvc in int128. On ancient versions of msvc and with some compatibility flags on wchar_t is a typedef for unsigned short, whereas on standards-conforming versions wchar_t is a typedef for __wchar_t. The first situation causes int128 to not compile as you can't define both `operator wchar_t()` and `operator unsigned short()` because they are the same type. This CL introduces a wrapper #define in order to abstract over the different typedefs for wchar_t. We do a define instead of a typedef so that we can #undef at the end and not leak the symbol, since we need it in a header. https://docs.microsoft.com/en-us/previous-versions/dh8che7s(v=vs.140) has more detail about the underlying problem. PiperOrigin-RevId: 225223756 GitOrigin-RevId: 636137f6f0de910691a3950387fefacfa4909fb8 Change-Id: Iad94e52e9484c5acec115a2f09ef2d5ec22c2074
6 years ago
// included by int128.h and relies on ABSL_INTERNAL_WCHAR_T being defined.
namespace int128_internal {
// Casts from unsigned to signed while preserving the underlying binary
// representation.
constexpr __int128 BitCastToSigned(unsigned __int128 v) {
// Casting an unsigned integer to a signed integer of the same
// width is implementation defined behavior if the source value would not fit
// in the destination type. We step around it with a roundtrip bitwise not
// operation to make sure this function remains constexpr. Clang and GCC
// optimize this to a no-op on x86-64.
return v & (static_cast<unsigned __int128>(1) << 127)
? ~static_cast<__int128>(~v)
: static_cast<__int128>(v);
}
} // namespace int128_internal
inline int128& int128::operator=(__int128 v) {
v_ = v;
return *this;
}
constexpr uint64_t Int128Low64(int128 v) {
return static_cast<uint64_t>(v.v_ & ~uint64_t{0});
}
constexpr int64_t Int128High64(int128 v) {
// Initially cast to unsigned to prevent a right shift on a negative value.
return int128_internal::BitCastToSigned(
static_cast<uint64_t>(static_cast<unsigned __int128>(v.v_) >> 64));
}
constexpr int128::int128(int64_t high, uint64_t low)
// Initially cast to unsigned to prevent a left shift that overflows.
: v_(int128_internal::BitCastToSigned(static_cast<unsigned __int128>(high)
<< 64) |
low) {}
constexpr int128::int128(int v) : v_{v} {}
constexpr int128::int128(long v) : v_{v} {} // NOLINT(runtime/int)
constexpr int128::int128(long long v) : v_{v} {} // NOLINT(runtime/int)
constexpr int128::int128(__int128 v) : v_{v} {}
constexpr int128::int128(unsigned int v) : v_{v} {}
constexpr int128::int128(unsigned long v) : v_{v} {} // NOLINT(runtime/int)
// NOLINTNEXTLINE(runtime/int)
constexpr int128::int128(unsigned long long v) : v_{v} {}
constexpr int128::int128(unsigned __int128 v) : v_{static_cast<__int128>(v)} {}
inline int128::int128(float v) {
v_ = static_cast<__int128>(v);
}
inline int128::int128(double v) {
v_ = static_cast<__int128>(v);
}
inline int128::int128(long double v) {
v_ = static_cast<__int128>(v);
}
constexpr int128::int128(uint128 v) : v_{static_cast<__int128>(v)} {}
constexpr int128::operator bool() const { return static_cast<bool>(v_); }
constexpr int128::operator char() const { return static_cast<char>(v_); }
constexpr int128::operator signed char() const {
return static_cast<signed char>(v_);
}
constexpr int128::operator unsigned char() const {
return static_cast<unsigned char>(v_);
}
constexpr int128::operator char16_t() const {
return static_cast<char16_t>(v_);
}
constexpr int128::operator char32_t() const {
return static_cast<char32_t>(v_);
}
constexpr int128::operator ABSL_INTERNAL_WCHAR_T() const {
return static_cast<ABSL_INTERNAL_WCHAR_T>(v_);
}
constexpr int128::operator short() const { // NOLINT(runtime/int)
return static_cast<short>(v_); // NOLINT(runtime/int)
}
constexpr int128::operator unsigned short() const { // NOLINT(runtime/int)
return static_cast<unsigned short>(v_); // NOLINT(runtime/int)
}
constexpr int128::operator int() const {
return static_cast<int>(v_);
}
constexpr int128::operator unsigned int() const {
return static_cast<unsigned int>(v_);
}
constexpr int128::operator long() const { // NOLINT(runtime/int)
return static_cast<long>(v_); // NOLINT(runtime/int)
}
constexpr int128::operator unsigned long() const { // NOLINT(runtime/int)
return static_cast<unsigned long>(v_); // NOLINT(runtime/int)
}
constexpr int128::operator long long() const { // NOLINT(runtime/int)
return static_cast<long long>(v_); // NOLINT(runtime/int)
}
constexpr int128::operator unsigned long long() const { // NOLINT(runtime/int)
return static_cast<unsigned long long>(v_); // NOLINT(runtime/int)
}
constexpr int128::operator __int128() const { return v_; }
constexpr int128::operator unsigned __int128() const {
return static_cast<unsigned __int128>(v_);
}
// Clang on PowerPC sometimes produces incorrect __int128 to floating point
// conversions. In that case, we do the conversion with a similar implementation
// to the conversion operators in int128_no_intrinsic.inc.
#if defined(__clang__) && !defined(__ppc64__)
inline int128::operator float() const { return static_cast<float>(v_); }
inline int128::operator double () const { return static_cast<double>(v_); }
inline int128::operator long double() const {
return static_cast<long double>(v_);
}
#else // Clang on PowerPC
// Forward declaration for conversion operators to floating point types.
int128 operator-(int128 v);
bool operator!=(int128 lhs, int128 rhs);
inline int128::operator float() const {
// We must convert the absolute value and then negate as needed, because
// floating point types are typically sign-magnitude. Otherwise, the
// difference between the high and low 64 bits when interpreted as two's
// complement overwhelms the precision of the mantissa.
//
// Also check to make sure we don't negate Int128Min()
return v_ < 0 && *this != Int128Min()
? -static_cast<float>(-*this)
: static_cast<float>(Int128Low64(*this)) +
std::ldexp(static_cast<float>(Int128High64(*this)), 64);
}
inline int128::operator double() const {
// See comment in int128::operator float() above.
return v_ < 0 && *this != Int128Min()
? -static_cast<double>(-*this)
: static_cast<double>(Int128Low64(*this)) +
std::ldexp(static_cast<double>(Int128High64(*this)), 64);
}
inline int128::operator long double() const {
// See comment in int128::operator float() above.
return v_ < 0 && *this != Int128Min()
? -static_cast<long double>(-*this)
: static_cast<long double>(Int128Low64(*this)) +
std::ldexp(static_cast<long double>(Int128High64(*this)),
64);
}
#endif // Clang on PowerPC
// Comparison operators.
inline bool operator==(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) == static_cast<__int128>(rhs);
}
inline bool operator!=(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) != static_cast<__int128>(rhs);
}
inline bool operator<(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) < static_cast<__int128>(rhs);
}
inline bool operator>(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) > static_cast<__int128>(rhs);
}
inline bool operator<=(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) <= static_cast<__int128>(rhs);
}
inline bool operator>=(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) >= static_cast<__int128>(rhs);
}
// Unary operators.
inline int128 operator-(int128 v) {
return -static_cast<__int128>(v);
}
inline bool operator!(int128 v) {
return !static_cast<__int128>(v);
}
inline int128 operator~(int128 val) {
return ~static_cast<__int128>(val);
}
// Arithmetic operators.
inline int128 operator+(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) + static_cast<__int128>(rhs);
}
inline int128 operator-(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) - static_cast<__int128>(rhs);
}
inline int128 operator*(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) * static_cast<__int128>(rhs);
}
inline int128 operator/(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) / static_cast<__int128>(rhs);
}
inline int128 operator%(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) % static_cast<__int128>(rhs);
}
inline int128 int128::operator++(int) {
int128 tmp(*this);
++v_;
return tmp;
}
inline int128 int128::operator--(int) {
int128 tmp(*this);
--v_;
return tmp;
}
inline int128& int128::operator++() {
++v_;
return *this;
}
inline int128& int128::operator--() {
--v_;
return *this;
}
inline int128 operator|(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) | static_cast<__int128>(rhs);
}
inline int128 operator&(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) & static_cast<__int128>(rhs);
}
inline int128 operator^(int128 lhs, int128 rhs) {
return static_cast<__int128>(lhs) ^ static_cast<__int128>(rhs);
}
inline int128 operator<<(int128 lhs, int amount) {
return static_cast<__int128>(lhs) << amount;
}
inline int128 operator>>(int128 lhs, int amount) {
return static_cast<__int128>(lhs) >> amount;
}