Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1812 lines
54 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/inlined_vector.h"
#include <algorithm>
#include <forward_list>
#include <list>
#include <memory>
#include <scoped_allocator>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/internal/exception_testing.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/base/options.h"
#include "absl/container/internal/counting_allocator.h"
#include "absl/container/internal/test_instance_tracker.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
namespace {
using absl::container_internal::CountingAllocator;
using absl::test_internal::CopyableMovableInstance;
using absl::test_internal::CopyableOnlyInstance;
using absl::test_internal::InstanceTracker;
using testing::AllOf;
using testing::Each;
using testing::ElementsAre;
using testing::ElementsAreArray;
using testing::Eq;
using testing::Gt;
using testing::PrintToString;
using IntVec = absl::InlinedVector<int, 8>;
MATCHER_P(SizeIs, n, "") {
return testing::ExplainMatchResult(n, arg.size(), result_listener);
}
MATCHER_P(CapacityIs, n, "") {
return testing::ExplainMatchResult(n, arg.capacity(), result_listener);
}
MATCHER_P(ValueIs, e, "") {
return testing::ExplainMatchResult(e, arg.value(), result_listener);
}
// TODO(bsamwel): Add support for movable-only types.
// Test fixture for typed tests on BaseCountedInstance derived classes, see
// test_instance_tracker.h.
template <typename T>
class InstanceTest : public ::testing::Test {};
TYPED_TEST_SUITE_P(InstanceTest);
// A simple reference counted class to make sure that the proper elements are
// destroyed in the erase(begin, end) test.
class RefCounted {
public:
RefCounted(int value, int* count) : value_(value), count_(count) { Ref(); }
RefCounted(const RefCounted& v) : value_(v.value_), count_(v.count_) {
Ref();
}
~RefCounted() {
Unref();
count_ = nullptr;
}
friend void swap(RefCounted& a, RefCounted& b) {
using std::swap;
swap(a.value_, b.value_);
swap(a.count_, b.count_);
}
RefCounted& operator=(RefCounted v) {
using std::swap;
swap(*this, v);
return *this;
}
void Ref() const {
ABSL_RAW_CHECK(count_ != nullptr, "");
++(*count_);
}
void Unref() const {
--(*count_);
ABSL_RAW_CHECK(*count_ >= 0, "");
}
int value_;
int* count_;
};
using RefCountedVec = absl::InlinedVector<RefCounted, 8>;
// A class with a vtable pointer
class Dynamic {
public:
virtual ~Dynamic() {}
};
using DynamicVec = absl::InlinedVector<Dynamic, 8>;
// Append 0..len-1 to *v
template <typename Container>
static void Fill(Container* v, int len, int offset = 0) {
for (int i = 0; i < len; i++) {
v->push_back(i + offset);
}
}
static IntVec Fill(int len, int offset = 0) {
IntVec v;
Fill(&v, len, offset);
return v;
}
TEST(IntVec, SimpleOps) {
for (int len = 0; len < 20; len++) {
IntVec v;
const IntVec& cv = v; // const alias
Fill(&v, len);
EXPECT_EQ(len, v.size());
EXPECT_LE(len, v.capacity());
for (int i = 0; i < len; i++) {
EXPECT_EQ(i, v[i]);
EXPECT_EQ(i, v.at(i));
}
EXPECT_EQ(v.begin(), v.data());
EXPECT_EQ(cv.begin(), cv.data());
int counter = 0;
for (IntVec::iterator iter = v.begin(); iter != v.end(); ++iter) {
EXPECT_EQ(counter, *iter);
counter++;
}
EXPECT_EQ(counter, len);
counter = 0;
for (IntVec::const_iterator iter = v.begin(); iter != v.end(); ++iter) {
EXPECT_EQ(counter, *iter);
counter++;
}
EXPECT_EQ(counter, len);
counter = 0;
for (IntVec::const_iterator iter = v.cbegin(); iter != v.cend(); ++iter) {
EXPECT_EQ(counter, *iter);
counter++;
}
EXPECT_EQ(counter, len);
if (len > 0) {
EXPECT_EQ(0, v.front());
EXPECT_EQ(len - 1, v.back());
v.pop_back();
EXPECT_EQ(len - 1, v.size());
for (int i = 0; i < v.size(); ++i) {
EXPECT_EQ(i, v[i]);
EXPECT_EQ(i, v.at(i));
}
}
}
}
TEST(IntVec, PopBackNoOverflow) {
IntVec v = {1};
v.pop_back();
EXPECT_EQ(v.size(), 0);
}
TEST(IntVec, AtThrows) {
IntVec v = {1, 2, 3};
EXPECT_EQ(v.at(2), 3);
ABSL_BASE_INTERNAL_EXPECT_FAIL(v.at(3), std::out_of_range,
"failed bounds check");
}
TEST(IntVec, ReverseIterator) {
for (int len = 0; len < 20; len++) {
IntVec v;
Fill(&v, len);
int counter = len;
for (IntVec::reverse_iterator iter = v.rbegin(); iter != v.rend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
counter = len;
for (IntVec::const_reverse_iterator iter = v.rbegin(); iter != v.rend();
++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
counter = len;
for (IntVec::const_reverse_iterator iter = v.crbegin(); iter != v.crend();
++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
}
}
TEST(IntVec, Erase) {
for (int len = 1; len < 20; len++) {
for (int i = 0; i < len; ++i) {
IntVec v;
Fill(&v, len);
v.erase(v.begin() + i);
EXPECT_EQ(len - 1, v.size());
for (int j = 0; j < i; ++j) {
EXPECT_EQ(j, v[j]);
}
for (int j = i; j < len - 1; ++j) {
EXPECT_EQ(j + 1, v[j]);
}
}
}
}
TEST(IntVec, Hardened) {
IntVec v;
Fill(&v, 10);
EXPECT_EQ(v[9], 9);
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED
EXPECT_DEATH_IF_SUPPORTED(v[10], "");
EXPECT_DEATH_IF_SUPPORTED(v[-1], "");
#endif
}
// At the end of this test loop, the elements between [erase_begin, erase_end)
// should have reference counts == 0, and all others elements should have
// reference counts == 1.
TEST(RefCountedVec, EraseBeginEnd) {
for (int len = 1; len < 20; ++len) {
for (int erase_begin = 0; erase_begin < len; ++erase_begin) {
for (int erase_end = erase_begin; erase_end <= len; ++erase_end) {
std::vector<int> counts(len, 0);
RefCountedVec v;
for (int i = 0; i < len; ++i) {
v.push_back(RefCounted(i, &counts[i]));
}
int erase_len = erase_end - erase_begin;
v.erase(v.begin() + erase_begin, v.begin() + erase_end);
EXPECT_EQ(len - erase_len, v.size());
// Check the elements before the first element erased.
for (int i = 0; i < erase_begin; ++i) {
EXPECT_EQ(i, v[i].value_);
}
// Check the elements after the first element erased.
for (int i = erase_begin; i < v.size(); ++i) {
EXPECT_EQ(i + erase_len, v[i].value_);
}
// Check that the elements at the beginning are preserved.
for (int i = 0; i < erase_begin; ++i) {
EXPECT_EQ(1, counts[i]);
}
// Check that the erased elements are destroyed
for (int i = erase_begin; i < erase_end; ++i) {
EXPECT_EQ(0, counts[i]);
}
// Check that the elements at the end are preserved.
for (int i = erase_end; i < len; ++i) {
EXPECT_EQ(1, counts[i]);
}
}
}
}
}
struct NoDefaultCtor {
explicit NoDefaultCtor(int) {}
};
struct NoCopy {
NoCopy() {}
NoCopy(const NoCopy&) = delete;
};
struct NoAssign {
NoAssign() {}
NoAssign& operator=(const NoAssign&) = delete;
};
struct MoveOnly {
MoveOnly() {}
MoveOnly(MoveOnly&&) = default;
MoveOnly& operator=(MoveOnly&&) = default;
};
TEST(InlinedVectorTest, NoDefaultCtor) {
absl::InlinedVector<NoDefaultCtor, 1> v(10, NoDefaultCtor(2));
(void)v;
}
TEST(InlinedVectorTest, NoCopy) {
absl::InlinedVector<NoCopy, 1> v(10);
(void)v;
}
TEST(InlinedVectorTest, NoAssign) {
absl::InlinedVector<NoAssign, 1> v(10);
(void)v;
}
TEST(InlinedVectorTest, MoveOnly) {
absl::InlinedVector<MoveOnly, 2> v;
v.push_back(MoveOnly{});
v.push_back(MoveOnly{});
v.push_back(MoveOnly{});
v.erase(v.begin());
v.push_back(MoveOnly{});
v.erase(v.begin(), v.begin() + 1);
v.insert(v.begin(), MoveOnly{});
v.emplace(v.begin());
v.emplace(v.begin(), MoveOnly{});
}
TEST(InlinedVectorTest, Noexcept) {
EXPECT_TRUE(std::is_nothrow_move_constructible<IntVec>::value);
EXPECT_TRUE((std::is_nothrow_move_constructible<
absl::InlinedVector<MoveOnly, 2>>::value));
struct MoveCanThrow {
MoveCanThrow(MoveCanThrow&&) {}
};
EXPECT_EQ(absl::default_allocator_is_nothrow::value,
(std::is_nothrow_move_constructible<
absl::InlinedVector<MoveCanThrow, 2>>::value));
}
TEST(InlinedVectorTest, EmplaceBack) {
absl::InlinedVector<std::pair<std::string, int>, 1> v;
auto& inlined_element = v.emplace_back("answer", 42);
EXPECT_EQ(&inlined_element, &v[0]);
EXPECT_EQ(inlined_element.first, "answer");
EXPECT_EQ(inlined_element.second, 42);
auto& allocated_element = v.emplace_back("taxicab", 1729);
EXPECT_EQ(&allocated_element, &v[1]);
EXPECT_EQ(allocated_element.first, "taxicab");
EXPECT_EQ(allocated_element.second, 1729);
}
TEST(InlinedVectorTest, ShrinkToFitGrowingVector) {
absl::InlinedVector<std::pair<std::string, int>, 1> v;
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 1);
v.emplace_back("answer", 42);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 1);
v.emplace_back("taxicab", 1729);
EXPECT_GE(v.capacity(), 2);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 2);
v.reserve(100);
EXPECT_GE(v.capacity(), 100);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 2);
}
TEST(InlinedVectorTest, ShrinkToFitEdgeCases) {
{
absl::InlinedVector<std::pair<std::string, int>, 1> v;
v.emplace_back("answer", 42);
v.emplace_back("taxicab", 1729);
EXPECT_GE(v.capacity(), 2);
v.pop_back();
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 1);
EXPECT_EQ(v[0].first, "answer");
EXPECT_EQ(v[0].second, 42);
}
{
absl::InlinedVector<std::string, 2> v(100);
v.resize(0);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 2); // inlined capacity
}
{
absl::InlinedVector<std::string, 2> v(100);
v.resize(1);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 2); // inlined capacity
}
{
absl::InlinedVector<std::string, 2> v(100);
v.resize(2);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 2);
}
{
absl::InlinedVector<std::string, 2> v(100);
v.resize(3);
v.shrink_to_fit();
EXPECT_EQ(v.capacity(), 3);
}
}
TEST(IntVec, Insert) {
for (int len = 0; len < 20; len++) {
for (int pos = 0; pos <= len; pos++) {
{
// Single element
std::vector<int> std_v;
Fill(&std_v, len);
IntVec v;
Fill(&v, len);
std_v.insert(std_v.begin() + pos, 9999);
IntVec::iterator it = v.insert(v.cbegin() + pos, 9999);
EXPECT_THAT(v, ElementsAreArray(std_v));
EXPECT_EQ(it, v.cbegin() + pos);
}
{
// n elements
std::vector<int> std_v;
Fill(&std_v, len);
IntVec v;
Fill(&v, len);
IntVec::size_type n = 5;
std_v.insert(std_v.begin() + pos, n, 9999);
IntVec::iterator it = v.insert(v.cbegin() + pos, n, 9999);
EXPECT_THAT(v, ElementsAreArray(std_v));
EXPECT_EQ(it, v.cbegin() + pos);
}
{
// Iterator range (random access iterator)
std::vector<int> std_v;
Fill(&std_v, len);
IntVec v;
Fill(&v, len);
const std::vector<int> input = {9999, 8888, 7777};
std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend());
IntVec::iterator it =
v.insert(v.cbegin() + pos, input.cbegin(), input.cend());
EXPECT_THAT(v, ElementsAreArray(std_v));
EXPECT_EQ(it, v.cbegin() + pos);
}
{
// Iterator range (forward iterator)
std::vector<int> std_v;
Fill(&std_v, len);
IntVec v;
Fill(&v, len);
const std::forward_list<int> input = {9999, 8888, 7777};
std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend());
IntVec::iterator it =
v.insert(v.cbegin() + pos, input.cbegin(), input.cend());
EXPECT_THAT(v, ElementsAreArray(std_v));
EXPECT_EQ(it, v.cbegin() + pos);
}
{
// Iterator range (input iterator)
std::vector<int> std_v;
Fill(&std_v, len);
IntVec v;
Fill(&v, len);
std_v.insert(std_v.begin() + pos, {9999, 8888, 7777});
std::istringstream input("9999 8888 7777");
IntVec::iterator it =
v.insert(v.cbegin() + pos, std::istream_iterator<int>(input),
std::istream_iterator<int>());
EXPECT_THAT(v, ElementsAreArray(std_v));
EXPECT_EQ(it, v.cbegin() + pos);
}
{
// Initializer list
std::vector<int> std_v;
Fill(&std_v, len);
IntVec v;
Fill(&v, len);
std_v.insert(std_v.begin() + pos, {9999, 8888});
IntVec::iterator it = v.insert(v.cbegin() + pos, {9999, 8888});
EXPECT_THAT(v, ElementsAreArray(std_v));
EXPECT_EQ(it, v.cbegin() + pos);
}
}
}
}
TEST(RefCountedVec, InsertConstructorDestructor) {
// Make sure the proper construction/destruction happen during insert
// operations.
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
for (int pos = 0; pos <= len; pos++) {
SCOPED_TRACE(pos);
std::vector<int> counts(len, 0);
int inserted_count = 0;
RefCountedVec v;
for (int i = 0; i < len; ++i) {
SCOPED_TRACE(i);
v.push_back(RefCounted(i, &counts[i]));
}
EXPECT_THAT(counts, Each(Eq(1)));
RefCounted insert_element(9999, &inserted_count);
EXPECT_EQ(1, inserted_count);
v.insert(v.begin() + pos, insert_element);
EXPECT_EQ(2, inserted_count);
// Check that the elements at the end are preserved.
EXPECT_THAT(counts, Each(Eq(1)));
EXPECT_EQ(2, inserted_count);
}
}
}
TEST(IntVec, Resize) {
for (int len = 0; len < 20; len++) {
IntVec v;
Fill(&v, len);
// Try resizing up and down by k elements
static const int kResizeElem = 1000000;
for (int k = 0; k < 10; k++) {
// Enlarging resize
v.resize(len + k, kResizeElem);
EXPECT_EQ(len + k, v.size());
EXPECT_LE(len + k, v.capacity());
for (int i = 0; i < len + k; i++) {
if (i < len) {
EXPECT_EQ(i, v[i]);
} else {
EXPECT_EQ(kResizeElem, v[i]);
}
}
// Shrinking resize
v.resize(len, kResizeElem);
EXPECT_EQ(len, v.size());
EXPECT_LE(len, v.capacity());
for (int i = 0; i < len; i++) {
EXPECT_EQ(i, v[i]);
}
}
}
}
TEST(IntVec, InitWithLength) {
for (int len = 0; len < 20; len++) {
IntVec v(len, 7);
EXPECT_EQ(len, v.size());
EXPECT_LE(len, v.capacity());
for (int i = 0; i < len; i++) {
EXPECT_EQ(7, v[i]);
}
}
}
TEST(IntVec, CopyConstructorAndAssignment) {
for (int len = 0; len < 20; len++) {
IntVec v;
Fill(&v, len);
EXPECT_EQ(len, v.size());
EXPECT_LE(len, v.capacity());
IntVec v2(v);
EXPECT_TRUE(v == v2) << PrintToString(v) << PrintToString(v2);
for (int start_len = 0; start_len < 20; start_len++) {
IntVec v3;
Fill(&v3, start_len, 99); // Add dummy elements that should go away
v3 = v;
EXPECT_TRUE(v == v3) << PrintToString(v) << PrintToString(v3);
}
}
}
TEST(IntVec, AliasingCopyAssignment) {
for (int len = 0; len < 20; ++len) {
IntVec original;
Fill(&original, len);
IntVec dup = original;
dup = *&dup;
EXPECT_EQ(dup, original);
}
}
TEST(IntVec, MoveConstructorAndAssignment) {
for (int len = 0; len < 20; len++) {
IntVec v_in;
const int inlined_capacity = v_in.capacity();
Fill(&v_in, len);
EXPECT_EQ(len, v_in.size());
EXPECT_LE(len, v_in.capacity());
{
IntVec v_temp(v_in);
auto* old_data = v_temp.data();
IntVec v_out(std::move(v_temp));
EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out);
if (v_in.size() > inlined_capacity) {
// Allocation is moved as a whole, data stays in place.
EXPECT_TRUE(v_out.data() == old_data);
} else {
EXPECT_FALSE(v_out.data() == old_data);
}
}
for (int start_len = 0; start_len < 20; start_len++) {
IntVec v_out;
Fill(&v_out, start_len, 99); // Add dummy elements that should go away
IntVec v_temp(v_in);
auto* old_data = v_temp.data();
v_out = std::move(v_temp);
EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out);
if (v_in.size() > inlined_capacity) {
// Allocation is moved as a whole, data stays in place.
EXPECT_TRUE(v_out.data() == old_data);
} else {
EXPECT_FALSE(v_out.data() == old_data);
}
}
}
}
class NotTriviallyDestructible {
public:
NotTriviallyDestructible() : p_(new int(1)) {}
explicit NotTriviallyDestructible(int i) : p_(new int(i)) {}
NotTriviallyDestructible(const NotTriviallyDestructible& other)
: p_(new int(*other.p_)) {}
NotTriviallyDestructible& operator=(const NotTriviallyDestructible& other) {
p_ = absl::make_unique<int>(*other.p_);
return *this;
}
bool operator==(const NotTriviallyDestructible& other) const {
return *p_ == *other.p_;
}
private:
std::unique_ptr<int> p_;
};
TEST(AliasingTest, Emplace) {
for (int i = 2; i < 20; ++i) {
absl::InlinedVector<NotTriviallyDestructible, 10> vec;
for (int j = 0; j < i; ++j) {
vec.push_back(NotTriviallyDestructible(j));
}
vec.emplace(vec.begin(), vec[0]);
EXPECT_EQ(vec[0], vec[1]);
vec.emplace(vec.begin() + i / 2, vec[i / 2]);
EXPECT_EQ(vec[i / 2], vec[i / 2 + 1]);
vec.emplace(vec.end() - 1, vec.back());
EXPECT_EQ(vec[vec.size() - 2], vec.back());
}
}
TEST(AliasingTest, InsertWithCount) {
for (int i = 1; i < 20; ++i) {
absl::InlinedVector<NotTriviallyDestructible, 10> vec;
for (int j = 0; j < i; ++j) {
vec.push_back(NotTriviallyDestructible(j));
}
for (int n = 0; n < 5; ++n) {
// We use back where we can because it's guaranteed to become invalidated
vec.insert(vec.begin(), n, vec.back());
auto b = vec.begin();
EXPECT_TRUE(
std::all_of(b, b + n, [&vec](const NotTriviallyDestructible& x) {
return x == vec.back();
}));
auto m_idx = vec.size() / 2;
vec.insert(vec.begin() + m_idx, n, vec.back());
auto m = vec.begin() + m_idx;
EXPECT_TRUE(
std::all_of(m, m + n, [&vec](const NotTriviallyDestructible& x) {
return x == vec.back();
}));
// We want distinct values so the equality test is meaningful,
// vec[vec.size() - 1] is also almost always invalidated.
auto old_e = vec.size() - 1;
auto val = vec[old_e];
vec.insert(vec.end(), n, vec[old_e]);
auto e = vec.begin() + old_e;
EXPECT_TRUE(std::all_of(
e, e + n,
[&val](const NotTriviallyDestructible& x) { return x == val; }));
}
}
}
TEST(OverheadTest, Storage) {
// Check for size overhead.
// In particular, ensure that std::allocator doesn't cost anything to store.
// The union should be absorbing some of the allocation bookkeeping overhead
// in the larger vectors, leaving only the size_ field as overhead.
EXPECT_EQ(2 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 1>) - 1 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 2>) - 2 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 3>) - 3 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 4>) - 4 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 5>) - 5 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 6>) - 6 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 7>) - 7 * sizeof(int*));
EXPECT_EQ(1 * sizeof(int*),
sizeof(absl::InlinedVector<int*, 8>) - 8 * sizeof(int*));
}
TEST(IntVec, Clear) {
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
IntVec v;
Fill(&v, len);
v.clear();
EXPECT_EQ(0, v.size());
EXPECT_EQ(v.begin(), v.end());
}
}
TEST(IntVec, Reserve) {
for (int len = 0; len < 20; len++) {
IntVec v;
Fill(&v, len);
for (int newlen = 0; newlen < 100; newlen++) {
const int* start_rep = v.data();
v.reserve(newlen);
const int* final_rep = v.data();
if (newlen <= len) {
EXPECT_EQ(start_rep, final_rep);
}
EXPECT_LE(newlen, v.capacity());
// Filling up to newlen should not change rep
while (v.size() < newlen) {
v.push_back(0);
}
EXPECT_EQ(final_rep, v.data());
}
}
}
TEST(StringVec, SelfRefPushBack) {
std::vector<std::string> std_v;
absl::InlinedVector<std::string, 4> v;
const std::string s = "A quite long string to ensure heap.";
std_v.push_back(s);
v.push_back(s);
for (int i = 0; i < 20; ++i) {
EXPECT_THAT(v, ElementsAreArray(std_v));
v.push_back(v.back());
std_v.push_back(std_v.back());
}
EXPECT_THAT(v, ElementsAreArray(std_v));
}
TEST(StringVec, SelfRefPushBackWithMove) {
std::vector<std::string> std_v;
absl::InlinedVector<std::string, 4> v;
const std::string s = "A quite long string to ensure heap.";
std_v.push_back(s);
v.push_back(s);
for (int i = 0; i < 20; ++i) {
EXPECT_EQ(v.back(), std_v.back());
v.push_back(std::move(v.back()));
std_v.push_back(std::move(std_v.back()));
}
EXPECT_EQ(v.back(), std_v.back());
}
TEST(StringVec, SelfMove) {
const std::string s = "A quite long string to ensure heap.";
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
absl::InlinedVector<std::string, 8> v;
for (int i = 0; i < len; ++i) {
SCOPED_TRACE(i);
v.push_back(s);
}
// Indirection necessary to avoid compiler warning.
v = std::move(*(&v));
// Ensure that the inlined vector is still in a valid state by copying it.
// We don't expect specific contents since a self-move results in an
// unspecified valid state.
std::vector<std::string> copy(v.begin(), v.end());
}
}
TEST(IntVec, Swap) {
for (int l1 = 0; l1 < 20; l1++) {
SCOPED_TRACE(l1);
for (int l2 = 0; l2 < 20; l2++) {
SCOPED_TRACE(l2);
IntVec a = Fill(l1, 0);
IntVec b = Fill(l2, 100);
{
using std::swap;
swap(a, b);
}
EXPECT_EQ(l1, b.size());
EXPECT_EQ(l2, a.size());
for (int i = 0; i < l1; i++) {
SCOPED_TRACE(i);
EXPECT_EQ(i, b[i]);
}
for (int i = 0; i < l2; i++) {
SCOPED_TRACE(i);
EXPECT_EQ(100 + i, a[i]);
}
}
}
}
TYPED_TEST_P(InstanceTest, Swap) {
using Instance = TypeParam;
using InstanceVec = absl::InlinedVector<Instance, 8>;
for (int l1 = 0; l1 < 20; l1++) {
SCOPED_TRACE(l1);
for (int l2 = 0; l2 < 20; l2++) {
SCOPED_TRACE(l2);
InstanceTracker tracker;
InstanceVec a, b;
const size_t inlined_capacity = a.capacity();
auto min_len = std::min(l1, l2);
auto max_len = std::max(l1, l2);
for (int i = 0; i < l1; i++) a.push_back(Instance(i));
for (int i = 0; i < l2; i++) b.push_back(Instance(100 + i));
EXPECT_EQ(tracker.instances(), l1 + l2);
tracker.ResetCopiesMovesSwaps();
{
using std::swap;
swap(a, b);
}
EXPECT_EQ(tracker.instances(), l1 + l2);
if (a.size() > inlined_capacity && b.size() > inlined_capacity) {
EXPECT_EQ(tracker.swaps(), 0); // Allocations are swapped.
EXPECT_EQ(tracker.moves(), 0);
} else if (a.size() <= inlined_capacity && b.size() <= inlined_capacity) {
EXPECT_EQ(tracker.swaps(), min_len);
EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),
max_len - min_len);
} else {
// One is allocated and the other isn't. The allocation is transferred
// without copying elements, and the inlined instances are copied/moved.
EXPECT_EQ(tracker.swaps(), 0);
EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()),
min_len);
}
EXPECT_EQ(l1, b.size());
EXPECT_EQ(l2, a.size());
for (int i = 0; i < l1; i++) {
EXPECT_EQ(i, b[i].value());
}
for (int i = 0; i < l2; i++) {
EXPECT_EQ(100 + i, a[i].value());
}
}
}
}
TEST(IntVec, EqualAndNotEqual) {
IntVec a, b;
EXPECT_TRUE(a == b);
EXPECT_FALSE(a != b);
a.push_back(3);
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
b.push_back(3);
EXPECT_TRUE(a == b);
EXPECT_FALSE(a != b);
b.push_back(7);
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
a.push_back(6);
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
a.clear();
b.clear();
for (int i = 0; i < 100; i++) {
a.push_back(i);
b.push_back(i);
EXPECT_TRUE(a == b);
EXPECT_FALSE(a != b);
b[i] = b[i] + 1;
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
b[i] = b[i] - 1; // Back to before
EXPECT_TRUE(a == b);
EXPECT_FALSE(a != b);
}
}
TEST(IntVec, RelationalOps) {
IntVec a, b;
EXPECT_FALSE(a < b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(a > b);
EXPECT_FALSE(b > a);
EXPECT_TRUE(a <= b);
EXPECT_TRUE(b <= a);
EXPECT_TRUE(a >= b);
EXPECT_TRUE(b >= a);
b.push_back(3);
EXPECT_TRUE(a < b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(a > b);
EXPECT_TRUE(b > a);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(b <= a);
EXPECT_FALSE(a >= b);
EXPECT_TRUE(b >= a);
}
TYPED_TEST_P(InstanceTest, CountConstructorsDestructors) {
using Instance = TypeParam;
using InstanceVec = absl::InlinedVector<Instance, 8>;
InstanceTracker tracker;
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
tracker.ResetCopiesMovesSwaps();
InstanceVec v;
const size_t inlined_capacity = v.capacity();
for (int i = 0; i < len; i++) {
v.push_back(Instance(i));
}
EXPECT_EQ(tracker.instances(), len);
EXPECT_GE(tracker.copies() + tracker.moves(),
len); // More due to reallocation.
tracker.ResetCopiesMovesSwaps();
// Enlarging resize() must construct some objects
tracker.ResetCopiesMovesSwaps();
v.resize(len + 10, Instance(100));
EXPECT_EQ(tracker.instances(), len + 10);
if (len <= inlined_capacity && len + 10 > inlined_capacity) {
EXPECT_EQ(tracker.copies() + tracker.moves(), 10 + len);
} else {
// Only specify a minimum number of copies + moves. We don't want to
// depend on the reallocation policy here.
EXPECT_GE(tracker.copies() + tracker.moves(),
10); // More due to reallocation.
}
// Shrinking resize() must destroy some objects
tracker.ResetCopiesMovesSwaps();
v.resize(len, Instance(100));
EXPECT_EQ(tracker.instances(), len);
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.moves(), 0);
// reserve() must not increase the number of initialized objects
SCOPED_TRACE("reserve");
v.reserve(len + 1000);
EXPECT_EQ(tracker.instances(), len);
EXPECT_EQ(tracker.copies() + tracker.moves(), len);
// pop_back() and erase() must destroy one object
if (len > 0) {
tracker.ResetCopiesMovesSwaps();
v.pop_back();
EXPECT_EQ(tracker.instances(), len - 1);
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.moves(), 0);
if (!v.empty()) {
tracker.ResetCopiesMovesSwaps();
v.erase(v.begin());
EXPECT_EQ(tracker.instances(), len - 2);
EXPECT_EQ(tracker.copies() + tracker.moves(), len - 2);
}
}
tracker.ResetCopiesMovesSwaps();
int instances_before_empty_erase = tracker.instances();
v.erase(v.begin(), v.begin());
EXPECT_EQ(tracker.instances(), instances_before_empty_erase);
EXPECT_EQ(tracker.copies() + tracker.moves(), 0);
}
}
TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnCopyConstruction) {
using Instance = TypeParam;
using InstanceVec = absl::InlinedVector<Instance, 8>;
InstanceTracker tracker;
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
tracker.ResetCopiesMovesSwaps();
InstanceVec v;
for (int i = 0; i < len; i++) {
v.push_back(Instance(i));
}
EXPECT_EQ(tracker.instances(), len);
EXPECT_GE(tracker.copies() + tracker.moves(),
len); // More due to reallocation.
tracker.ResetCopiesMovesSwaps();
{ // Copy constructor should create 'len' more instances.
InstanceVec v_copy(v);
EXPECT_EQ(tracker.instances(), len + len);
EXPECT_EQ(tracker.copies(), len);
EXPECT_EQ(tracker.moves(), 0);
}
EXPECT_EQ(tracker.instances(), len);
}
}
TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveConstruction) {
using Instance = TypeParam;
using InstanceVec = absl::InlinedVector<Instance, 8>;
InstanceTracker tracker;
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
tracker.ResetCopiesMovesSwaps();
InstanceVec v;
const size_t inlined_capacity = v.capacity();
for (int i = 0; i < len; i++) {
v.push_back(Instance(i));
}
EXPECT_EQ(tracker.instances(), len);
EXPECT_GE(tracker.copies() + tracker.moves(),
len); // More due to reallocation.
tracker.ResetCopiesMovesSwaps();
{
InstanceVec v_copy(std::move(v));
if (len > inlined_capacity) {
// Allocation is moved as a whole.
EXPECT_EQ(tracker.instances(), len);
EXPECT_EQ(tracker.live_instances(), len);
// Tests an implementation detail, don't rely on this in your code.
EXPECT_EQ(v.size(), 0); // NOLINT misc-use-after-move
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.moves(), 0);
} else {
EXPECT_EQ(tracker.instances(), len + len);
if (Instance::supports_move()) {
EXPECT_EQ(tracker.live_instances(), len);
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.moves(), len);
} else {
EXPECT_EQ(tracker.live_instances(), len + len);
EXPECT_EQ(tracker.copies(), len);
EXPECT_EQ(tracker.moves(), 0);
}
}
EXPECT_EQ(tracker.swaps(), 0);
}
}
}
TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnAssignment) {
using Instance = TypeParam;
using InstanceVec = absl::InlinedVector<Instance, 8>;
InstanceTracker tracker;
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
for (int longorshort = 0; longorshort <= 1; ++longorshort) {
SCOPED_TRACE(longorshort);
tracker.ResetCopiesMovesSwaps();
InstanceVec longer, shorter;
for (int i = 0; i < len; i++) {
longer.push_back(Instance(i));
shorter.push_back(Instance(i));
}
longer.push_back(Instance(len));
EXPECT_EQ(tracker.instances(), len + len + 1);
EXPECT_GE(tracker.copies() + tracker.moves(),
len + len + 1); // More due to reallocation.
tracker.ResetCopiesMovesSwaps();
if (longorshort) {
shorter = longer;
EXPECT_EQ(tracker.instances(), (len + 1) + (len + 1));
EXPECT_GE(tracker.copies() + tracker.moves(),
len + 1); // More due to reallocation.
} else {
longer = shorter;
EXPECT_EQ(tracker.instances(), len + len);
EXPECT_EQ(tracker.copies() + tracker.moves(), len);
}
}
}
}
TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveAssignment) {
using Instance = TypeParam;
using InstanceVec = absl::InlinedVector<Instance, 8>;
InstanceTracker tracker;
for (int len = 0; len < 20; len++) {
SCOPED_TRACE(len);
for (int longorshort = 0; longorshort <= 1; ++longorshort) {
SCOPED_TRACE(longorshort);
tracker.ResetCopiesMovesSwaps();
InstanceVec longer, shorter;
const int inlined_capacity = longer.capacity();
for (int i = 0; i < len; i++) {
longer.push_back(Instance(i));
shorter.push_back(Instance(i));
}
longer.push_back(Instance(len));
EXPECT_EQ(tracker.instances(), len + len + 1);
EXPECT_GE(tracker.copies() + tracker.moves(),
len + len + 1); // More due to reallocation.
tracker.ResetCopiesMovesSwaps();
int src_len;
if (longorshort) {
src_len = len + 1;
shorter = std::move(longer);
} else {
src_len = len;
longer = std::move(shorter);
}
if (src_len > inlined_capacity) {
// Allocation moved as a whole.
EXPECT_EQ(tracker.instances(), src_len);
EXPECT_EQ(tracker.live_instances(), src_len);
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.moves(), 0);
} else {
// Elements are all copied.
EXPECT_EQ(tracker.instances(), src_len + src_len);
if (Instance::supports_move()) {
EXPECT_EQ(tracker.copies(), 0);
EXPECT_EQ(tracker.moves(), src_len);
EXPECT_EQ(tracker.live_instances(), src_len);
} else {
EXPECT_EQ(tracker.copies(), src_len);
EXPECT_EQ(tracker.moves(), 0);
EXPECT_EQ(tracker.live_instances(), src_len + src_len);
}
}
EXPECT_EQ(tracker.swaps(), 0);
}
}
}
TEST(CountElemAssign, SimpleTypeWithInlineBacking) {
for (size_t original_size = 0; original_size <= 5; ++original_size) {
SCOPED_TRACE(original_size);
// Original contents are [12345, 12345, ...]
std::vector<int> original_contents(original_size, 12345);
absl::InlinedVector<int, 2> v(original_contents.begin(),
original_contents.end());
v.assign(2, 123);
EXPECT_THAT(v, AllOf(SizeIs(2), ElementsAre(123, 123)));
if (original_size <= 2) {
// If the original had inline backing, it should stay inline.
EXPECT_EQ(2, v.capacity());
}
}
}
TEST(CountElemAssign, SimpleTypeWithAllocation) {
for (size_t original_size = 0; original_size <= 5; ++original_size) {
SCOPED_TRACE(original_size);
// Original contents are [12345, 12345, ...]
std::vector<int> original_contents(original_size, 12345);
absl::InlinedVector<int, 2> v(original_contents.begin(),
original_contents.end());
v.assign(3, 123);
EXPECT_THAT(v, AllOf(SizeIs(3), ElementsAre(123, 123, 123)));
EXPECT_LE(v.size(), v.capacity());
}
}
TYPED_TEST_P(InstanceTest, CountElemAssignInlineBacking) {
using Instance = TypeParam;
for (size_t original_size = 0; original_size <= 5; ++original_size) {
SCOPED_TRACE(original_size);
// Original contents are [12345, 12345, ...]
std::vector<Instance> original_contents(original_size, Instance(12345));
absl::InlinedVector<Instance, 2> v(original_contents.begin(),
original_contents.end());
v.assign(2, Instance(123));
EXPECT_THAT(v, AllOf(SizeIs(2), ElementsAre(ValueIs(123), ValueIs(123))));
if (original_size <= 2) {
// If the original had inline backing, it should stay inline.
EXPECT_EQ(2, v.capacity());
}
}
}
template <typename Instance>
void InstanceCountElemAssignWithAllocationTest() {
for (size_t original_size = 0; original_size <= 5; ++original_size) {
SCOPED_TRACE(original_size);
// Original contents are [12345, 12345, ...]
std::vector<Instance> original_contents(original_size, Instance(12345));
absl::InlinedVector<Instance, 2> v(original_contents.begin(),
original_contents.end());
v.assign(3, Instance(123));
EXPECT_THAT(v, AllOf(SizeIs(3), ElementsAre(ValueIs(123), ValueIs(123),
ValueIs(123))));
EXPECT_LE(v.size(), v.capacity());
}
}
TEST(CountElemAssign, WithAllocationCopyableInstance) {
InstanceCountElemAssignWithAllocationTest<CopyableOnlyInstance>();
}
TEST(CountElemAssign, WithAllocationCopyableMovableInstance) {
InstanceCountElemAssignWithAllocationTest<CopyableMovableInstance>();
}
TEST(RangedConstructor, SimpleType) {
std::vector<int> source_v = {4, 5, 6};
// First try to fit in inline backing
absl::InlinedVector<int, 4> v(source_v.begin(), source_v.end());
EXPECT_EQ(3, v.size());
EXPECT_EQ(4, v.capacity()); // Indication that we're still on inlined storage
EXPECT_EQ(4, v[0]);
EXPECT_EQ(5, v[1]);
EXPECT_EQ(6, v[2]);
// Now, force a re-allocate
absl::InlinedVector<int, 2> realloc_v(source_v.begin(), source_v.end());
EXPECT_EQ(3, realloc_v.size());
EXPECT_LT(2, realloc_v.capacity());
EXPECT_EQ(4, realloc_v[0]);
EXPECT_EQ(5, realloc_v[1]);
EXPECT_EQ(6, realloc_v[2]);
}
// Test for ranged constructors using Instance as the element type and
// SourceContainer as the source container type.
template <typename Instance, typename SourceContainer, int inlined_capacity>
void InstanceRangedConstructorTestForContainer() {
InstanceTracker tracker;
SourceContainer source_v = {Instance(0), Instance(1)};
tracker.ResetCopiesMovesSwaps();
absl::InlinedVector<Instance, inlined_capacity> v(source_v.begin(),
source_v.end());
EXPECT_EQ(2, v.size());
EXPECT_LT(1, v.capacity());
EXPECT_EQ(0, v[0].value());
EXPECT_EQ(1, v[1].value());
EXPECT_EQ(tracker.copies(), 2);
EXPECT_EQ(tracker.moves(), 0);
}
template <typename Instance, int inlined_capacity>
void InstanceRangedConstructorTestWithCapacity() {
// Test with const and non-const, random access and non-random-access sources.
// TODO(bsamwel): Test with an input iterator source.
{
SCOPED_TRACE("std::list");
InstanceRangedConstructorTestForContainer<Instance, std::list<Instance>,
inlined_capacity>();
{
SCOPED_TRACE("const std::list");
InstanceRangedConstructorTestForContainer<
Instance, const std::list<Instance>, inlined_capacity>();
}
{
SCOPED_TRACE("std::vector");
InstanceRangedConstructorTestForContainer<Instance, std::vector<Instance>,
inlined_capacity>();
}
{
SCOPED_TRACE("const std::vector");
InstanceRangedConstructorTestForContainer<
Instance, const std::vector<Instance>, inlined_capacity>();
}
}
}
TYPED_TEST_P(InstanceTest, RangedConstructor) {
using Instance = TypeParam;
SCOPED_TRACE("capacity=1");
InstanceRangedConstructorTestWithCapacity<Instance, 1>();
SCOPED_TRACE("capacity=2");
InstanceRangedConstructorTestWithCapacity<Instance, 2>();
}
TEST(RangedConstructor, ElementsAreConstructed) {
std::vector<std::string> source_v = {"cat", "dog"};
// Force expansion and re-allocation of v. Ensures that when the vector is
// expanded that new elements are constructed.
absl::InlinedVector<std::string, 1> v(source_v.begin(), source_v.end());
EXPECT_EQ("cat", v[0]);
EXPECT_EQ("dog", v[1]);
}
TEST(RangedAssign, SimpleType) {
// Test for all combinations of original sizes (empty and non-empty inline,
// and out of line) and target sizes.
for (size_t original_size = 0; original_size <= 5; ++original_size) {
SCOPED_TRACE(original_size);
// Original contents are [12345, 12345, ...]
std::vector<int> original_contents(original_size, 12345);
for (size_t target_size = 0; target_size <= 5; ++target_size) {
SCOPED_TRACE(target_size);
// New contents are [3, 4, ...]
std::vector<int> new_contents;
for (size_t i = 0; i < target_size; ++i) {
new_contents.push_back(i + 3);
}
absl::InlinedVector<int, 3> v(original_contents.begin(),
original_contents.end());
v.assign(new_contents.begin(), new_contents.end());
EXPECT_EQ(new_contents.size(), v.size());
EXPECT_LE(new_contents.size(), v.capacity());
if (target_size <= 3 && original_size <= 3) {
// Storage should stay inline when target size is small.
EXPECT_EQ(3, v.capacity());
}
EXPECT_THAT(v, ElementsAreArray(new_contents));
}
}
}
// Returns true if lhs and rhs have the same value.
template <typename Instance>
static bool InstanceValuesEqual(const Instance& lhs, const Instance& rhs) {
return lhs.value() == rhs.value();
}
// Test for ranged assign() using Instance as the element type and
// SourceContainer as the source container type.
template <typename Instance, typename SourceContainer>
void InstanceRangedAssignTestForContainer() {
// Test for all combinations of original sizes (empty and non-empty inline,
// and out of line) and target sizes.
for (size_t original_size = 0; original_size <= 5; ++original_size) {
SCOPED_TRACE(original_size);
// Original contents are [12345, 12345, ...]
std::vector<Instance> original_contents(original_size, Instance(12345));
for (size_t target_size = 0; target_size <= 5; ++target_size) {
SCOPED_TRACE(target_size);
// New contents are [3, 4, ...]
// Generate data using a non-const container, because SourceContainer
// itself may be const.
// TODO(bsamwel): Test with an input iterator.
std::vector<Instance> new_contents_in;
for (size_t i = 0; i < target_size; ++i) {
new_contents_in.push_back(Instance(i + 3));
}
SourceContainer new_contents(new_contents_in.begin(),
new_contents_in.end());
absl::InlinedVector<Instance, 3> v(original_contents.begin(),
original_contents.end());
v.assign(new_contents.begin(), new_contents.end());
EXPECT_EQ(new_contents.size(), v.size());
EXPECT_LE(new_contents.size(), v.capacity());
if (target_size <= 3 && original_size <= 3) {
// Storage should stay inline when target size is small.
EXPECT_EQ(3, v.capacity());
}
EXPECT_TRUE(std::equal(v.begin(), v.end(), new_contents.begin(),
InstanceValuesEqual<Instance>));
}
}
}
TYPED_TEST_P(InstanceTest, RangedAssign) {
using Instance = TypeParam;
// Test with const and non-const, random access and non-random-access sources.
// TODO(bsamwel): Test with an input iterator source.
SCOPED_TRACE("std::list");
InstanceRangedAssignTestForContainer<Instance, std::list<Instance>>();
SCOPED_TRACE("const std::list");
InstanceRangedAssignTestForContainer<Instance, const std::list<Instance>>();
SCOPED_TRACE("std::vector");
InstanceRangedAssignTestForContainer<Instance, std::vector<Instance>>();
SCOPED_TRACE("const std::vector");
InstanceRangedAssignTestForContainer<Instance, const std::vector<Instance>>();
}
TEST(InitializerListConstructor, SimpleTypeWithInlineBacking) {
EXPECT_THAT((absl::InlinedVector<int, 4>{4, 5, 6}),
AllOf(SizeIs(3), CapacityIs(4), ElementsAre(4, 5, 6)));
}
TEST(InitializerListConstructor, SimpleTypeWithReallocationRequired) {
EXPECT_THAT((absl::InlinedVector<int, 2>{4, 5, 6}),
AllOf(SizeIs(3), CapacityIs(Gt(2)), ElementsAre(4, 5, 6)));
}
TEST(InitializerListConstructor, DisparateTypesInList) {
EXPECT_THAT((absl::InlinedVector<int, 2>{-7, 8ULL}), ElementsAre(-7, 8));
EXPECT_THAT((absl::InlinedVector<std::string, 2>{"foo", std::string("bar")}),
ElementsAre("foo", "bar"));
}
TEST(InitializerListConstructor, ComplexTypeWithInlineBacking) {
EXPECT_THAT((absl::InlinedVector<CopyableMovableInstance, 1>{
CopyableMovableInstance(0)}),
AllOf(SizeIs(1), CapacityIs(1), ElementsAre(ValueIs(0))));
}
TEST(InitializerListConstructor, ComplexTypeWithReallocationRequired) {
EXPECT_THAT(
(absl::InlinedVector<CopyableMovableInstance, 1>{
CopyableMovableInstance(0), CopyableMovableInstance(1)}),
AllOf(SizeIs(2), CapacityIs(Gt(1)), ElementsAre(ValueIs(0), ValueIs(1))));
}
TEST(InitializerListAssign, SimpleTypeFitsInlineBacking) {
for (size_t original_size = 0; original_size <= 4; ++original_size) {
SCOPED_TRACE(original_size);
absl::InlinedVector<int, 2> v1(original_size, 12345);
const size_t original_capacity_v1 = v1.capacity();
v1.assign({3});
EXPECT_THAT(
v1, AllOf(SizeIs(1), CapacityIs(original_capacity_v1), ElementsAre(3)));
absl::InlinedVector<int, 2> v2(original_size, 12345);
const size_t original_capacity_v2 = v2.capacity();
v2 = {3};
EXPECT_THAT(
v2, AllOf(SizeIs(1), CapacityIs(original_capacity_v2), ElementsAre(3)));
}
}
TEST(InitializerListAssign, SimpleTypeDoesNotFitInlineBacking) {
for (size_t original_size = 0; original_size <= 4; ++original_size) {
SCOPED_TRACE(original_size);
absl::InlinedVector<int, 2> v1(original_size, 12345);
v1.assign({3, 4, 5});
EXPECT_THAT(v1, AllOf(SizeIs(3), ElementsAre(3, 4, 5)));
EXPECT_LE(3, v1.capacity());
absl::InlinedVector<int, 2> v2(original_size, 12345);
v2 = {3, 4, 5};
EXPECT_THAT(v2, AllOf(SizeIs(3), ElementsAre(3, 4, 5)));
EXPECT_LE(3, v2.capacity());
}
}
TEST(InitializerListAssign, DisparateTypesInList) {
absl::InlinedVector<int, 2> v_int1;
v_int1.assign({-7, 8ULL});
EXPECT_THAT(v_int1, ElementsAre(-7, 8));
absl::InlinedVector<int, 2> v_int2;
v_int2 = {-7, 8ULL};
EXPECT_THAT(v_int2, ElementsAre(-7, 8));
absl::InlinedVector<std::string, 2> v_string1;
v_string1.assign({"foo", std::string("bar")});
EXPECT_THAT(v_string1, ElementsAre("foo", "bar"));
absl::InlinedVector<std::string, 2> v_string2;
v_string2 = {"foo", std::string("bar")};
EXPECT_THAT(v_string2, ElementsAre("foo", "bar"));
}
TYPED_TEST_P(InstanceTest, InitializerListAssign) {
using Instance = TypeParam;
for (size_t original_size = 0; original_size <= 4; ++original_size) {
SCOPED_TRACE(original_size);
absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));
const size_t original_capacity = v.capacity();
v.assign({Instance(3)});
EXPECT_THAT(v, AllOf(SizeIs(1), CapacityIs(original_capacity),
ElementsAre(ValueIs(3))));
}
for (size_t original_size = 0; original_size <= 4; ++original_size) {
SCOPED_TRACE(original_size);
absl::InlinedVector<Instance, 2> v(original_size, Instance(12345));
v.assign({Instance(3), Instance(4), Instance(5)});
EXPECT_THAT(
v, AllOf(SizeIs(3), ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5))));
EXPECT_LE(3, v.capacity());
}
}
REGISTER_TYPED_TEST_CASE_P(InstanceTest, Swap, CountConstructorsDestructors,
CountConstructorsDestructorsOnCopyConstruction,
CountConstructorsDestructorsOnMoveConstruction,
CountConstructorsDestructorsOnAssignment,
CountConstructorsDestructorsOnMoveAssignment,
CountElemAssignInlineBacking, RangedConstructor,
RangedAssign, InitializerListAssign);
using InstanceTypes =
::testing::Types<CopyableOnlyInstance, CopyableMovableInstance>;
INSTANTIATE_TYPED_TEST_CASE_P(InstanceTestOnTypes, InstanceTest, InstanceTypes);
TEST(DynamicVec, DynamicVecCompiles) {
DynamicVec v;
(void)v;
}
TEST(AllocatorSupportTest, Constructors) {
using MyAlloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
int64_t allocated = 0;
MyAlloc alloc(&allocated);
{ AllocVec ABSL_ATTRIBUTE_UNUSED v; }
{ AllocVec ABSL_ATTRIBUTE_UNUSED v(alloc); }
{ AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); }
{ AllocVec ABSL_ATTRIBUTE_UNUSED v({1, 2, 3}, alloc); }
AllocVec v2;
{ AllocVec ABSL_ATTRIBUTE_UNUSED v(v2, alloc); }
{ AllocVec ABSL_ATTRIBUTE_UNUSED v(std::move(v2), alloc); }
}
TEST(AllocatorSupportTest, CountAllocations) {
using MyAlloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
int64_t allocated = 0;
MyAlloc alloc(&allocated);
{
AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + 4, alloc);
EXPECT_THAT(allocated, 0);
}
EXPECT_THAT(allocated, 0);
{
AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
EXPECT_THAT(allocated, v.size() * sizeof(int));
}
EXPECT_THAT(allocated, 0);
{
AllocVec v(4, 1, alloc);
EXPECT_THAT(allocated, 0);
int64_t allocated2 = 0;
MyAlloc alloc2(&allocated2);
AllocVec v2(v, alloc2);
EXPECT_THAT(allocated2, 0);
int64_t allocated3 = 0;
MyAlloc alloc3(&allocated3);
AllocVec v3(std::move(v), alloc3);
EXPECT_THAT(allocated3, 0);
}
EXPECT_THAT(allocated, 0);
{
AllocVec v(8, 2, alloc);
EXPECT_THAT(allocated, v.size() * sizeof(int));
int64_t allocated2 = 0;
MyAlloc alloc2(&allocated2);
AllocVec v2(v, alloc2);
EXPECT_THAT(allocated2, v2.size() * sizeof(int));
int64_t allocated3 = 0;
MyAlloc alloc3(&allocated3);
AllocVec v3(std::move(v), alloc3);
EXPECT_THAT(allocated3, v3.size() * sizeof(int));
}
EXPECT_EQ(allocated, 0);
{
// Test shrink_to_fit deallocations.
AllocVec v(8, 2, alloc);
EXPECT_EQ(allocated, 8 * sizeof(int));
v.resize(5);
EXPECT_EQ(allocated, 8 * sizeof(int));
v.shrink_to_fit();
EXPECT_EQ(allocated, 5 * sizeof(int));
v.resize(4);
EXPECT_EQ(allocated, 5 * sizeof(int));
v.shrink_to_fit();
EXPECT_EQ(allocated, 0);
}
}
TEST(AllocatorSupportTest, SwapBothAllocated) {
using MyAlloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
int64_t allocated1 = 0;
int64_t allocated2 = 0;
{
const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7};
const int ia2[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
MyAlloc a1(&allocated1);
MyAlloc a2(&allocated2);
AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);
AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2);
EXPECT_LT(v1.capacity(), v2.capacity());
EXPECT_THAT(allocated1, v1.capacity() * sizeof(int));
EXPECT_THAT(allocated2, v2.capacity() * sizeof(int));
v1.swap(v2);
EXPECT_THAT(v1, ElementsAreArray(ia2));
EXPECT_THAT(v2, ElementsAreArray(ia1));
EXPECT_THAT(allocated1, v2.capacity() * sizeof(int));
EXPECT_THAT(allocated2, v1.capacity() * sizeof(int));
}
EXPECT_THAT(allocated1, 0);
EXPECT_THAT(allocated2, 0);
}
TEST(AllocatorSupportTest, SwapOneAllocated) {
using MyAlloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, 4, MyAlloc>;
int64_t allocated1 = 0;
int64_t allocated2 = 0;
{
const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7};
const int ia2[] = {0, 1, 2, 3};
MyAlloc a1(&allocated1);
MyAlloc a2(&allocated2);
AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1);
AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2);
EXPECT_THAT(allocated1, v1.capacity() * sizeof(int));
EXPECT_THAT(allocated2, 0);
v1.swap(v2);
EXPECT_THAT(v1, ElementsAreArray(ia2));
EXPECT_THAT(v2, ElementsAreArray(ia1));
EXPECT_THAT(allocated1, v2.capacity() * sizeof(int));
EXPECT_THAT(allocated2, 0);
EXPECT_TRUE(v2.get_allocator() == a1);
EXPECT_TRUE(v1.get_allocator() == a2);
}
EXPECT_THAT(allocated1, 0);
EXPECT_THAT(allocated2, 0);
}
TEST(AllocatorSupportTest, ScopedAllocatorWorksInlined) {
using StdVector = std::vector<int, CountingAllocator<int>>;
using Alloc = CountingAllocator<StdVector>;
using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>;
using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>;
int64_t total_allocated_byte_count = 0;
AllocVec inlined_case(ScopedAlloc(Alloc(+&total_allocated_byte_count)));
// Called only once to remain inlined
inlined_case.emplace_back();
int64_t absl_responsible_for_count = total_allocated_byte_count;
// MSVC's allocator preemptively allocates in debug mode
#if !defined(_MSC_VER)
EXPECT_EQ(absl_responsible_for_count, 0);
#endif // !defined(_MSC_VER)
inlined_case[0].emplace_back();
EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count);
inlined_case.clear();
inlined_case.shrink_to_fit();
EXPECT_EQ(total_allocated_byte_count, 0);
}
TEST(AllocatorSupportTest, ScopedAllocatorWorksAllocated) {
using StdVector = std::vector<int, CountingAllocator<int>>;
using Alloc = CountingAllocator<StdVector>;
using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>;
using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>;
int64_t total_allocated_byte_count = 0;
AllocVec allocated_case(ScopedAlloc(Alloc(+&total_allocated_byte_count)));
// Called twice to force into being allocated
allocated_case.emplace_back();
allocated_case.emplace_back();
int64_t absl_responsible_for_count = total_allocated_byte_count;
EXPECT_GT(absl_responsible_for_count, 0);
allocated_case[1].emplace_back();
EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count);
allocated_case.clear();
allocated_case.shrink_to_fit();
EXPECT_EQ(total_allocated_byte_count, 0);
}
TEST(AllocatorSupportTest, SizeAllocConstructor) {
constexpr int inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocVec = absl::InlinedVector<int, inlined_size, Alloc>;
{
auto len = inlined_size / 2;
int64_t allocated = 0;
auto v = AllocVec(len, Alloc(&allocated));
// Inline storage used; allocator should not be invoked
EXPECT_THAT(allocated, 0);
EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));
}
{
auto len = inlined_size * 2;
int64_t allocated = 0;
auto v = AllocVec(len, Alloc(&allocated));
// Out of line storage used; allocation of 8 elements expected
EXPECT_THAT(allocated, len * sizeof(int));
EXPECT_THAT(v, AllOf(SizeIs(len), Each(0)));
}
}
TEST(InlinedVectorTest, MinimumAllocatorCompilesUsingTraits) {
using T = int;
using A = std::allocator<T>;
using ATraits = absl::allocator_traits<A>;
struct MinimumAllocator {
using value_type = T;
value_type* allocate(size_t n) {
A a;
return ATraits::allocate(a, n);
}
void deallocate(value_type* p, size_t n) {
A a;
ATraits::deallocate(a, p, n);
}
};
absl::InlinedVector<T, 1, MinimumAllocator> vec;
vec.emplace_back();
vec.resize(0);
}
TEST(InlinedVectorTest, AbslHashValueWorks) {
using V = absl::InlinedVector<int, 4>;
std::vector<V> cases;
// Generate a variety of vectors some of these are small enough for the inline
// space but are stored out of line.
for (int i = 0; i < 10; ++i) {
V v;
for (int j = 0; j < i; ++j) {
v.push_back(j);
}
cases.push_back(v);
v.resize(i % 4);
cases.push_back(v);
}
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));
}
} // anonymous namespace