Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

218 lines
7.8 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/bernoulli_distribution.h"
#include <cmath>
#include <cstddef>
#include <random>
#include <sstream>
#include <utility>
#include "gtest/gtest.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
namespace {
class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> {
};
TEST_P(BernoulliTest, Serialize) {
const double d = GetParam().first;
absl::bernoulli_distribution before(d);
{
absl::bernoulli_distribution via_param{
absl::bernoulli_distribution::param_type(d)};
EXPECT_EQ(via_param, before);
}
std::stringstream ss;
ss << before;
absl::bernoulli_distribution after(0.6789);
EXPECT_NE(before.p(), after.p());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.p(), after.p());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
}
TEST_P(BernoulliTest, Accuracy) {
// Sadly, the claim to fame for this implementation is precise accuracy, which
// is very, very hard to measure, the improvements come as trials approach the
// limit of double accuracy; thus the outcome differs from the
// std::bernoulli_distribution with a probability of approximately 1 in 2^-53.
const std::pair<double, size_t> para = GetParam();
size_t trials = para.second;
double p = para.first;
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
size_t yes = 0;
absl::bernoulli_distribution dist(p);
for (size_t i = 0; i < trials; ++i) {
if (dist(rng)) yes++;
}
// Compute the distribution parameters for a binomial test, using a normal
// approximation for the confidence interval, as there are a sufficiently
// large number of trials that the central limit theorem applies.
const double stddev_p = std::sqrt((p * (1.0 - p)) / trials);
const double expected = trials * p;
const double stddev = trials * stddev_p;
// 5 sigma, approved by Richard Feynman
EXPECT_NEAR(yes, expected, 5 * stddev)
<< "@" << p << ", "
<< std::abs(static_cast<double>(yes) - expected) / stddev << " stddev";
}
// There must be many more trials to make the mean approximately normal for `p`
// closes to 0 or 1.
INSTANTIATE_TEST_SUITE_P(
All, BernoulliTest,
::testing::Values(
// Typical values.
std::make_pair(0, 30000), std::make_pair(1e-3, 30000000),
std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000),
std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000),
std::make_pair(1, 30000),
// Boundary cases.
std::make_pair(std::nextafter(1.0, 0.0), 1), // ~1 - epsilon
std::make_pair(std::numeric_limits<double>::epsilon(), 1),
std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
1.0), // min + epsilon
1),
std::make_pair(std::numeric_limits<double>::min(), // smallest normal
1),
std::make_pair(
std::numeric_limits<double>::denorm_min(), // smallest denorm
1),
std::make_pair(std::numeric_limits<double>::min() / 2, 1), // denorm
std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
0.0), // denorm_max
1)));
// NOTE: absl::bernoulli_distribution is not guaranteed to be stable.
TEST(BernoulliTest, StabilityTest) {
// absl::bernoulli_distribution stability relies on FastUniformBits and
// integer arithmetic.
absl::random_internal::sequence_urbg urbg({
0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull,
0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull,
});
// Generate a string of '0' and '1' for the distribution output.
auto generate = [&urbg](absl::bernoulli_distribution& dist) {
std::string output;
output.reserve(36);
urbg.reset();
for (int i = 0; i < 35; i++) {
output.append(dist(urbg) ? "1" : "0");
}
return output;
};
const double kP = 0.0331289862362;
{
absl::bernoulli_distribution dist(kP);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00000000000010000000000010000000000") << dist;
}
{
absl::bernoulli_distribution dist(kP * 10.0);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00000100010010010010000011000011010") << dist;
}
{
absl::bernoulli_distribution dist(kP * 20.0);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00011110010110110011011111110111011") << dist;
}
{
absl::bernoulli_distribution dist(1.0 - kP);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "11111111111111111111011111111111111") << dist;
}
}
TEST(BernoulliTest, StabilityTest2) {
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
// Generate a string of '0' and '1' for the distribution output.
auto generate = [&urbg](absl::bernoulli_distribution& dist) {
std::string output;
output.reserve(13);
urbg.reset();
for (int i = 0; i < 12; i++) {
output.append(dist(urbg) ? "1" : "0");
}
return output;
};
constexpr double b0 = 1.0 / 13.0 / 0.2;
constexpr double b1 = 2.0 / 13.0 / 0.2;
constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
{
absl::bernoulli_distribution dist(b0);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "000011100101") << dist;
}
{
absl::bernoulli_distribution dist(b1);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "001111101101") << dist;
}
{
absl::bernoulli_distribution dist(b3);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "001111101111") << dist;
}
}
} // namespace