|
|
|
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
|
|
|
|
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
|
|
|
|
|
|
|
|
// Generate stack tracer for aarch64
|
|
|
|
|
|
|
|
#if defined(__linux__)
|
|
|
|
#include <sys/mman.h>
|
|
|
|
#include <ucontext.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <atomic>
|
|
|
|
#include <cassert>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
#include "absl/debugging/internal/address_is_readable.h"
|
|
|
|
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
|
|
|
|
#include "absl/debugging/stacktrace.h"
|
|
|
|
|
|
|
|
static const uintptr_t kUnknownFrameSize = 0;
|
|
|
|
|
|
|
|
#if defined(__linux__)
|
|
|
|
// Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
|
|
|
|
static const unsigned char* GetKernelRtSigreturnAddress() {
|
|
|
|
constexpr uintptr_t kImpossibleAddress = 1;
|
|
|
|
static std::atomic<uintptr_t> memoized{kImpossibleAddress};
|
|
|
|
uintptr_t address = memoized.load(std::memory_order_relaxed);
|
|
|
|
if (address != kImpossibleAddress) {
|
|
|
|
return reinterpret_cast<const unsigned char*>(address);
|
|
|
|
}
|
|
|
|
|
|
|
|
address = reinterpret_cast<uintptr_t>(nullptr);
|
|
|
|
|
|
|
|
#ifdef ABSL_HAVE_VDSO_SUPPORT
|
|
|
|
absl::debugging_internal::VDSOSupport vdso;
|
|
|
|
if (vdso.IsPresent()) {
|
|
|
|
absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
|
|
|
|
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", STT_FUNC,
|
|
|
|
&symbol_info) ||
|
|
|
|
symbol_info.address == nullptr) {
|
|
|
|
// Unexpected: VDSO is present, yet the expected symbol is missing
|
|
|
|
// or null.
|
|
|
|
assert(false && "VDSO is present, but doesn't have expected symbol");
|
|
|
|
} else {
|
|
|
|
if (reinterpret_cast<uintptr_t>(symbol_info.address) !=
|
|
|
|
kImpossibleAddress) {
|
|
|
|
address = reinterpret_cast<uintptr_t>(symbol_info.address);
|
|
|
|
} else {
|
|
|
|
assert(false && "VDSO returned invalid address");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
memoized.store(address, std::memory_order_relaxed);
|
|
|
|
return reinterpret_cast<const unsigned char*>(address);
|
|
|
|
}
|
|
|
|
#endif // __linux__
|
|
|
|
|
|
|
|
// Compute the size of a stack frame in [low..high). We assume that
|
|
|
|
// low < high. Return size of kUnknownFrameSize.
|
|
|
|
template<typename T>
|
|
|
|
static inline uintptr_t ComputeStackFrameSize(const T* low,
|
|
|
|
const T* high) {
|
|
|
|
const char* low_char_ptr = reinterpret_cast<const char *>(low);
|
|
|
|
const char* high_char_ptr = reinterpret_cast<const char *>(high);
|
|
|
|
return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given a pointer to a stack frame, locate and return the calling
|
|
|
|
// stackframe, or return null if no stackframe can be found. Perform sanity
|
|
|
|
// checks (the strictness of which is controlled by the boolean parameter
|
|
|
|
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
|
|
|
|
template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
|
|
|
|
static void **NextStackFrame(void **old_frame_pointer, const void *uc) {
|
|
|
|
void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
|
|
|
|
bool check_frame_size = true;
|
|
|
|
|
|
|
|
#if defined(__linux__)
|
|
|
|
if (WITH_CONTEXT && uc != nullptr) {
|
|
|
|
// Check to see if next frame's return address is __kernel_rt_sigreturn.
|
|
|
|
if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {
|
|
|
|
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
|
|
|
|
// old_frame_pointer[0] is not suitable for unwinding, look at
|
|
|
|
// ucontext to discover frame pointer before signal.
|
|
|
|
void **const pre_signal_frame_pointer =
|
|
|
|
reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
|
|
|
|
|
|
|
|
// Check that alleged frame pointer is actually readable. This is to
|
|
|
|
// prevent "double fault" in case we hit the first fault due to e.g.
|
|
|
|
// stack corruption.
|
|
|
|
if (!absl::debugging_internal::AddressIsReadable(
|
|
|
|
pre_signal_frame_pointer))
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
// Alleged frame pointer is readable, use it for further unwinding.
|
|
|
|
new_frame_pointer = pre_signal_frame_pointer;
|
|
|
|
|
|
|
|
// Skip frame size check if we return from a signal. We may be using a
|
|
|
|
// an alternate stack for signals.
|
|
|
|
check_frame_size = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// aarch64 ABI requires stack pointer to be 16-byte-aligned.
|
|
|
|
if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
// Check frame size. In strict mode, we assume frames to be under
|
|
|
|
// 100,000 bytes. In non-strict mode, we relax the limit to 1MB.
|
|
|
|
if (check_frame_size) {
|
|
|
|
const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
|
|
|
|
const uintptr_t frame_size =
|
|
|
|
ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
|
|
|
|
if (frame_size == kUnknownFrameSize || frame_size > max_size)
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
return new_frame_pointer;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
|
|
|
|
static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
|
|
|
|
const void *ucp, int *min_dropped_frames) {
|
|
|
|
#ifdef __GNUC__
|
|
|
|
void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));
|
|
|
|
#else
|
|
|
|
# error reading stack point not yet supported on this platform.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
skip_count++; // Skip the frame for this function.
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
// The frame pointer points to low address of a frame. The first 64-bit
|
|
|
|
// word of a frame points to the next frame up the call chain, which normally
|
|
|
|
// is just after the high address of the current frame. The second word of
|
|
|
|
// a frame contains return adress of to the caller. To find a pc value
|
|
|
|
// associated with the current frame, we need to go down a level in the call
|
|
|
|
// chain. So we remember return the address of the last frame seen. This
|
|
|
|
// does not work for the first stack frame, which belongs to UnwindImp() but
|
|
|
|
// we skip the frame for UnwindImp() anyway.
|
|
|
|
void* prev_return_address = nullptr;
|
|
|
|
|
|
|
|
while (frame_pointer && n < max_depth) {
|
|
|
|
// The absl::GetStackFrames routine is called when we are in some
|
|
|
|
// informational context (the failure signal handler for example).
|
|
|
|
// Use the non-strict unwinding rules to produce a stack trace
|
|
|
|
// that is as complete as possible (even if it contains a few bogus
|
|
|
|
// entries in some rare cases).
|
|
|
|
void **next_frame_pointer =
|
|
|
|
NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
|
|
|
|
|
|
|
|
if (skip_count > 0) {
|
|
|
|
skip_count--;
|
|
|
|
} else {
|
|
|
|
result[n] = prev_return_address;
|
|
|
|
if (IS_STACK_FRAMES) {
|
|
|
|
sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer);
|
|
|
|
}
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
prev_return_address = frame_pointer[1];
|
|
|
|
frame_pointer = next_frame_pointer;
|
|
|
|
}
|
|
|
|
if (min_dropped_frames != nullptr) {
|
|
|
|
// Implementation detail: we clamp the max of frames we are willing to
|
|
|
|
// count, so as not to spend too much time in the loop below.
|
|
|
|
const int kMaxUnwind = 200;
|
|
|
|
int j = 0;
|
|
|
|
for (; frame_pointer != nullptr && j < kMaxUnwind; j++) {
|
|
|
|
frame_pointer =
|
|
|
|
NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
|
|
|
|
}
|
|
|
|
*min_dropped_frames = j;
|
|
|
|
}
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
namespace debugging_internal {
|
|
|
|
bool StackTraceWorksForTest() {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} // namespace debugging_internal
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
|