|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "absl/random/uniform_real_distribution.h"
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <iterator>
|
|
|
|
#include <random>
|
|
|
|
#include <sstream>
|
|
|
|
#include <string>
|
Export of internal Abseil changes
--
e2de21d54c02b6419c57c0f4e2a16b608deca260 by Evan Brown <ezb@google.com>:
Remove the InsertEnd benchmark.
This benchmark has significantly different possible behaviors that can result in misleading metrics. Specifically, we can have a case where we are deallocating the last node in the b-tree in the erase and then allocating a new node in the insert call repeatedly, whereas normally, we end up just inserting/erasing a value from the last node. Also, the name of the benchmark is misleading because it involves an erase and an insert, but the name only mentions the insert.
PiperOrigin-RevId: 360930639
--
51f6bb97b9cbdb809c31b77e93ce080ca3cba9ea by Benjamin Barenblat <bbaren@google.com>:
Stop testing with double-double random variables
On POWER, long double is often represented as a pair of doubles added
together (double-double arithmetic). We’ve already special-cased
double-double arithmetic in a number of tests, but compiler
bugs [1, 2, 3] have now triggered both false positives and false
negatives, which suggests testing with double doubles is unlikely to
yield useful signal. Remove the special casing and detect if we’re on a
double-double system; if so, just don’t test long doubles.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048
[2] https://bugs.llvm.org/show_bug.cgi?id=49131
[3] https://bugs.llvm.org/show_bug.cgi?id=49132
PiperOrigin-RevId: 360793161
--
07fb4d7932c2f5d711c480f759dacb0be60f975e by Abseil Team <absl-team@google.com>:
internal change
PiperOrigin-RevId: 360712825
GitOrigin-RevId: e2de21d54c02b6419c57c0f4e2a16b608deca260
Change-Id: I98389b5a8789dcc8f35abc00c767e909181665f0
4 years ago
|
|
|
#include <type_traits>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "gmock/gmock.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "absl/base/internal/raw_logging.h"
|
Export of internal Abseil changes
--
e2de21d54c02b6419c57c0f4e2a16b608deca260 by Evan Brown <ezb@google.com>:
Remove the InsertEnd benchmark.
This benchmark has significantly different possible behaviors that can result in misleading metrics. Specifically, we can have a case where we are deallocating the last node in the b-tree in the erase and then allocating a new node in the insert call repeatedly, whereas normally, we end up just inserting/erasing a value from the last node. Also, the name of the benchmark is misleading because it involves an erase and an insert, but the name only mentions the insert.
PiperOrigin-RevId: 360930639
--
51f6bb97b9cbdb809c31b77e93ce080ca3cba9ea by Benjamin Barenblat <bbaren@google.com>:
Stop testing with double-double random variables
On POWER, long double is often represented as a pair of doubles added
together (double-double arithmetic). We’ve already special-cased
double-double arithmetic in a number of tests, but compiler
bugs [1, 2, 3] have now triggered both false positives and false
negatives, which suggests testing with double doubles is unlikely to
yield useful signal. Remove the special casing and detect if we’re on a
double-double system; if so, just don’t test long doubles.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048
[2] https://bugs.llvm.org/show_bug.cgi?id=49131
[3] https://bugs.llvm.org/show_bug.cgi?id=49132
PiperOrigin-RevId: 360793161
--
07fb4d7932c2f5d711c480f759dacb0be60f975e by Abseil Team <absl-team@google.com>:
internal change
PiperOrigin-RevId: 360712825
GitOrigin-RevId: e2de21d54c02b6419c57c0f4e2a16b608deca260
Change-Id: I98389b5a8789dcc8f35abc00c767e909181665f0
4 years ago
|
|
|
#include "absl/numeric/internal/representation.h"
|
|
|
|
#include "absl/random/internal/chi_square.h"
|
|
|
|
#include "absl/random/internal/distribution_test_util.h"
|
|
|
|
#include "absl/random/internal/pcg_engine.h"
|
|
|
|
#include "absl/random/internal/sequence_urbg.h"
|
|
|
|
#include "absl/random/random.h"
|
|
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
|
|
|
|
// NOTES:
|
|
|
|
// * Some documentation on generating random real values suggests that
|
|
|
|
// it is possible to use std::nextafter(b, DBL_MAX) to generate a value on
|
|
|
|
// the closed range [a, b]. Unfortunately, that technique is not universally
|
|
|
|
// reliable due to floating point quantization.
|
|
|
|
//
|
|
|
|
// * absl::uniform_real_distribution<float> generates between 2^28 and 2^29
|
|
|
|
// distinct floating point values in the range [0, 1).
|
|
|
|
//
|
|
|
|
// * absl::uniform_real_distribution<float> generates at least 2^23 distinct
|
|
|
|
// floating point values in the range [1, 2). This should be the same as
|
|
|
|
// any other range covered by a single exponent in IEEE 754.
|
|
|
|
//
|
|
|
|
// * absl::uniform_real_distribution<double> generates more than 2^52 distinct
|
|
|
|
// values in the range [0, 1), and should generate at least 2^52 distinct
|
|
|
|
// values in the range of [1, 2).
|
|
|
|
//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
template <typename RealType>
|
|
|
|
class UniformRealDistributionTest : public ::testing::Test {};
|
|
|
|
|
Export of internal Abseil changes
--
e2de21d54c02b6419c57c0f4e2a16b608deca260 by Evan Brown <ezb@google.com>:
Remove the InsertEnd benchmark.
This benchmark has significantly different possible behaviors that can result in misleading metrics. Specifically, we can have a case where we are deallocating the last node in the b-tree in the erase and then allocating a new node in the insert call repeatedly, whereas normally, we end up just inserting/erasing a value from the last node. Also, the name of the benchmark is misleading because it involves an erase and an insert, but the name only mentions the insert.
PiperOrigin-RevId: 360930639
--
51f6bb97b9cbdb809c31b77e93ce080ca3cba9ea by Benjamin Barenblat <bbaren@google.com>:
Stop testing with double-double random variables
On POWER, long double is often represented as a pair of doubles added
together (double-double arithmetic). We’ve already special-cased
double-double arithmetic in a number of tests, but compiler
bugs [1, 2, 3] have now triggered both false positives and false
negatives, which suggests testing with double doubles is unlikely to
yield useful signal. Remove the special casing and detect if we’re on a
double-double system; if so, just don’t test long doubles.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048
[2] https://bugs.llvm.org/show_bug.cgi?id=49131
[3] https://bugs.llvm.org/show_bug.cgi?id=49132
PiperOrigin-RevId: 360793161
--
07fb4d7932c2f5d711c480f759dacb0be60f975e by Abseil Team <absl-team@google.com>:
internal change
PiperOrigin-RevId: 360712825
GitOrigin-RevId: e2de21d54c02b6419c57c0f4e2a16b608deca260
Change-Id: I98389b5a8789dcc8f35abc00c767e909181665f0
4 years ago
|
|
|
// double-double arithmetic is not supported well by either GCC or Clang; see
|
|
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
|
|
|
|
// https://bugs.llvm.org/show_bug.cgi?id=49131, and
|
|
|
|
// https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
|
|
|
|
// with double doubles until compiler support is better.
|
|
|
|
using RealTypes =
|
|
|
|
std::conditional<absl::numeric_internal::IsDoubleDouble(),
|
|
|
|
::testing::Types<float, double>,
|
|
|
|
::testing::Types<float, double, long double>>::type;
|
|
|
|
|
|
|
|
TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);
|
|
|
|
|
|
|
|
TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {
|
|
|
|
using param_type =
|
|
|
|
typename absl::uniform_real_distribution<TypeParam>::param_type;
|
|
|
|
|
|
|
|
constexpr const TypeParam a{1152921504606846976};
|
|
|
|
|
|
|
|
constexpr int kCount = 1000;
|
|
|
|
absl::InsecureBitGen gen;
|
|
|
|
for (const auto& param : {
|
|
|
|
param_type(),
|
|
|
|
param_type(TypeParam(2.0), TypeParam(2.0)), // Same
|
|
|
|
param_type(TypeParam(-0.1), TypeParam(0.1)),
|
|
|
|
param_type(TypeParam(0.05), TypeParam(0.12)),
|
|
|
|
param_type(TypeParam(-0.05), TypeParam(0.13)),
|
|
|
|
param_type(TypeParam(-0.05), TypeParam(-0.02)),
|
|
|
|
// double range = 0
|
|
|
|
// 2^60 , 2^60 + 2^6
|
|
|
|
param_type(a, TypeParam(1152921504606847040)),
|
|
|
|
// 2^60 , 2^60 + 2^7
|
|
|
|
param_type(a, TypeParam(1152921504606847104)),
|
|
|
|
// double range = 2^8
|
|
|
|
// 2^60 , 2^60 + 2^8
|
|
|
|
param_type(a, TypeParam(1152921504606847232)),
|
|
|
|
// float range = 0
|
|
|
|
// 2^60 , 2^60 + 2^36
|
|
|
|
param_type(a, TypeParam(1152921573326323712)),
|
|
|
|
// 2^60 , 2^60 + 2^37
|
|
|
|
param_type(a, TypeParam(1152921642045800448)),
|
|
|
|
// float range = 2^38
|
|
|
|
// 2^60 , 2^60 + 2^38
|
|
|
|
param_type(a, TypeParam(1152921779484753920)),
|
|
|
|
// Limits
|
|
|
|
param_type(0, std::numeric_limits<TypeParam>::max()),
|
|
|
|
param_type(std::numeric_limits<TypeParam>::lowest(), 0),
|
|
|
|
param_type(0, std::numeric_limits<TypeParam>::epsilon()),
|
|
|
|
param_type(-std::numeric_limits<TypeParam>::epsilon(),
|
|
|
|
std::numeric_limits<TypeParam>::epsilon()),
|
|
|
|
param_type(std::numeric_limits<TypeParam>::epsilon(),
|
|
|
|
2 * std::numeric_limits<TypeParam>::epsilon()),
|
|
|
|
}) {
|
|
|
|
// Validate parameters.
|
|
|
|
const auto a = param.a();
|
|
|
|
const auto b = param.b();
|
|
|
|
absl::uniform_real_distribution<TypeParam> before(a, b);
|
|
|
|
EXPECT_EQ(before.a(), param.a());
|
|
|
|
EXPECT_EQ(before.b(), param.b());
|
|
|
|
|
|
|
|
{
|
|
|
|
absl::uniform_real_distribution<TypeParam> via_param(param);
|
|
|
|
EXPECT_EQ(via_param, before);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::stringstream ss;
|
|
|
|
ss << before;
|
|
|
|
absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0),
|
|
|
|
TypeParam(3.1));
|
|
|
|
|
|
|
|
EXPECT_NE(before.a(), after.a());
|
|
|
|
EXPECT_NE(before.b(), after.b());
|
|
|
|
EXPECT_NE(before.param(), after.param());
|
|
|
|
EXPECT_NE(before, after);
|
|
|
|
|
|
|
|
ss >> after;
|
|
|
|
|
|
|
|
EXPECT_EQ(before.a(), after.a());
|
|
|
|
EXPECT_EQ(before.b(), after.b());
|
|
|
|
EXPECT_EQ(before.param(), after.param());
|
|
|
|
EXPECT_EQ(before, after);
|
|
|
|
|
|
|
|
// Smoke test.
|
|
|
|
auto sample_min = after.max();
|
|
|
|
auto sample_max = after.min();
|
|
|
|
for (int i = 0; i < kCount; i++) {
|
|
|
|
auto sample = after(gen);
|
|
|
|
// Failure here indicates a bug in uniform_real_distribution::operator(),
|
|
|
|
// or bad parameters--range too large, etc.
|
|
|
|
if (after.min() == after.max()) {
|
|
|
|
EXPECT_EQ(sample, after.min());
|
|
|
|
} else {
|
|
|
|
EXPECT_GE(sample, after.min());
|
|
|
|
EXPECT_LT(sample, after.max());
|
|
|
|
}
|
|
|
|
if (sample > sample_max) {
|
|
|
|
sample_max = sample;
|
|
|
|
}
|
|
|
|
if (sample < sample_min) {
|
|
|
|
sample_min = sample;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!std::is_same<TypeParam, long double>::value) {
|
|
|
|
// static_cast<double>(long double) can overflow.
|
|
|
|
std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min),
|
|
|
|
", ", static_cast<double>(sample_max));
|
|
|
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#pragma warning(push)
|
|
|
|
#pragma warning(disable:4756) // Constant arithmetic overflow.
|
|
|
|
#endif
|
|
|
|
TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {
|
|
|
|
#if GTEST_HAS_DEATH_TEST
|
|
|
|
// Hi < Lo
|
|
|
|
EXPECT_DEBUG_DEATH(
|
|
|
|
{ absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, "");
|
|
|
|
|
|
|
|
// Hi - Lo > numeric_limits<>::max()
|
|
|
|
EXPECT_DEBUG_DEATH(
|
|
|
|
{
|
|
|
|
absl::uniform_real_distribution<TypeParam> dist(
|
|
|
|
std::numeric_limits<TypeParam>::lowest(),
|
|
|
|
std::numeric_limits<TypeParam>::max());
|
|
|
|
},
|
|
|
|
"");
|
|
|
|
#endif // GTEST_HAS_DEATH_TEST
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
// opt-mode, for invalid parameters, will generate a garbage value,
|
|
|
|
// but should not enter an infinite loop.
|
|
|
|
absl::InsecureBitGen gen;
|
|
|
|
{
|
|
|
|
absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0);
|
|
|
|
auto x = dist(gen);
|
|
|
|
EXPECT_FALSE(std::isnan(x)) << x;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
absl::uniform_real_distribution<TypeParam> dist(
|
|
|
|
std::numeric_limits<TypeParam>::lowest(),
|
|
|
|
std::numeric_limits<TypeParam>::max());
|
|
|
|
auto x = dist(gen);
|
|
|
|
// Infinite result.
|
|
|
|
EXPECT_FALSE(std::isfinite(x)) << x;
|
|
|
|
}
|
|
|
|
#endif // NDEBUG
|
|
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#pragma warning(pop) // warning(disable:4756)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TYPED_TEST(UniformRealDistributionTest, TestMoments) {
|
|
|
|
constexpr int kSize = 1000000;
|
|
|
|
std::vector<double> values(kSize);
|
|
|
|
|
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows
|
|
|
|
// these tests to be deterministic, while still testing the qualify of the
|
|
|
|
// implementation.
|
|
|
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
|
|
|
|
|
|
|
|
absl::uniform_real_distribution<TypeParam> dist;
|
|
|
|
for (int i = 0; i < kSize; i++) {
|
|
|
|
values[i] = dist(rng);
|
|
|
|
}
|
|
|
|
|
|
|
|
const auto moments =
|
|
|
|
absl::random_internal::ComputeDistributionMoments(values);
|
|
|
|
EXPECT_NEAR(0.5, moments.mean, 0.01);
|
|
|
|
EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);
|
|
|
|
EXPECT_NEAR(0.0, moments.skewness, 0.02);
|
|
|
|
EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);
|
|
|
|
}
|
|
|
|
|
|
|
|
TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {
|
|
|
|
using absl::random_internal::kChiSquared;
|
|
|
|
using param_type =
|
|
|
|
typename absl::uniform_real_distribution<TypeParam>::param_type;
|
|
|
|
|
|
|
|
constexpr size_t kTrials = 100000;
|
|
|
|
constexpr int kBuckets = 50;
|
|
|
|
constexpr double kExpected =
|
|
|
|
static_cast<double>(kTrials) / static_cast<double>(kBuckets);
|
|
|
|
|
|
|
|
// 1-in-100000 threshold, but remember, there are about 8 tests
|
|
|
|
// in this file. And the test could fail for other reasons.
|
|
|
|
// Empirically validated with --runs_per_test=10000.
|
|
|
|
const int kThreshold =
|
|
|
|
absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);
|
|
|
|
|
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows
|
|
|
|
// these tests to be deterministic, while still testing the qualify of the
|
|
|
|
// implementation.
|
|
|
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
|
|
|
|
|
|
|
|
for (const auto& param : {param_type(0, 1), param_type(5, 12),
|
|
|
|
param_type(-5, 13), param_type(-5, -2)}) {
|
|
|
|
const double min_val = param.a();
|
|
|
|
const double max_val = param.b();
|
|
|
|
const double factor = kBuckets / (max_val - min_val);
|
|
|
|
|
|
|
|
std::vector<int32_t> counts(kBuckets, 0);
|
|
|
|
absl::uniform_real_distribution<TypeParam> dist(param);
|
|
|
|
for (size_t i = 0; i < kTrials; i++) {
|
|
|
|
auto x = dist(rng);
|
|
|
|
auto bucket = static_cast<size_t>((x - min_val) * factor);
|
|
|
|
counts[bucket]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected(
|
|
|
|
std::begin(counts), std::end(counts), kExpected);
|
|
|
|
if (chi_square > kThreshold) {
|
|
|
|
double p_value =
|
|
|
|
absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
|
|
|
|
|
|
|
|
// Chi-squared test failed. Output does not appear to be uniform.
|
|
|
|
std::string msg;
|
|
|
|
for (const auto& a : counts) {
|
|
|
|
absl::StrAppend(&msg, a, "\n");
|
|
|
|
}
|
|
|
|
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
|
|
|
|
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
|
|
|
|
kThreshold);
|
|
|
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str());
|
|
|
|
FAIL() << msg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TYPED_TEST(UniformRealDistributionTest, StabilityTest) {
|
|
|
|
// absl::uniform_real_distribution stability relies only on
|
|
|
|
// random_internal::RandU64ToDouble and random_internal::RandU64ToFloat.
|
|
|
|
absl::random_internal::sequence_urbg urbg(
|
|
|
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
|
|
|
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
|
|
|
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
|
|
|
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
|
|
|
|
|
|
|
|
std::vector<int> output(12);
|
|
|
|
|
|
|
|
absl::uniform_real_distribution<TypeParam> dist;
|
|
|
|
std::generate(std::begin(output), std::end(output), [&] {
|
|
|
|
return static_cast<int>(TypeParam(1000000) * dist(urbg));
|
|
|
|
});
|
|
|
|
|
|
|
|
EXPECT_THAT(
|
|
|
|
output, //
|
|
|
|
testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,
|
|
|
|
77341, 12527, 708791, 834451, 932808));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(UniformRealDistributionTest, AlgorithmBounds) {
|
|
|
|
absl::uniform_real_distribution<double> dist;
|
|
|
|
|
|
|
|
{
|
|
|
|
// This returns the smallest value >0 from absl::uniform_real_distribution.
|
|
|
|
absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
|
|
|
|
double a = dist(urbg);
|
|
|
|
EXPECT_EQ(a, 5.42101086242752217004e-20);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// This returns a value very near 0.5 from absl::uniform_real_distribution.
|
|
|
|
absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
|
|
|
|
double a = dist(urbg);
|
|
|
|
EXPECT_EQ(a, 0.499999999999999944489);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// This returns a value very near 0.5 from absl::uniform_real_distribution.
|
|
|
|
absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});
|
|
|
|
double a = dist(urbg);
|
|
|
|
EXPECT_EQ(a, 0.5);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// This returns the largest value <1 from absl::uniform_real_distribution.
|
|
|
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});
|
|
|
|
double a = dist(urbg);
|
|
|
|
EXPECT_EQ(a, 0.999999999999999888978);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// This *ALSO* returns the largest value <1.
|
|
|
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
|
|
|
|
double a = dist(urbg);
|
|
|
|
EXPECT_EQ(a, 0.999999999999999888978);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|