Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

500 lines
15 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The implementation of the absl::Time class, which is declared in
// //absl/time.h.
//
// The representation for an absl::Time is an absl::Duration offset from the
// epoch. We use the traditional Unix epoch (1970-01-01 00:00:00 +0000)
// for convenience, but this is not exposed in the API and could be changed.
//
// NOTE: To keep type verbosity to a minimum, the following variable naming
// conventions are used throughout this file.
//
// tz: An absl::TimeZone
// ci: An absl::TimeZone::CivilInfo
// ti: An absl::TimeZone::TimeInfo
// cd: An absl::CivilDay or a cctz::civil_day
// cs: An absl::CivilSecond or a cctz::civil_second
// bd: An absl::Time::Breakdown
// cl: A cctz::time_zone::civil_lookup
// al: A cctz::time_zone::absolute_lookup
#include "absl/time/time.h"
#if defined(_MSC_VER)
#include <winsock2.h> // for timeval
#endif
#include <cstring>
#include <ctime>
#include <limits>
#include "absl/time/internal/cctz/include/cctz/civil_time.h"
#include "absl/time/internal/cctz/include/cctz/time_zone.h"
namespace cctz = absl::time_internal::cctz;
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
inline cctz::time_point<cctz::seconds> unix_epoch() {
return std::chrono::time_point_cast<cctz::seconds>(
std::chrono::system_clock::from_time_t(0));
}
// Floors d to the next unit boundary closer to negative infinity.
inline int64_t FloorToUnit(absl::Duration d, absl::Duration unit) {
absl::Duration rem;
int64_t q = absl::IDivDuration(d, unit, &rem);
return (q > 0 ||
rem >= ZeroDuration() ||
q == std::numeric_limits<int64_t>::min()) ? q : q - 1;
}
inline absl::Time::Breakdown InfiniteFutureBreakdown() {
absl::Time::Breakdown bd;
bd.year = std::numeric_limits<int64_t>::max();
bd.month = 12;
bd.day = 31;
bd.hour = 23;
bd.minute = 59;
bd.second = 59;
bd.subsecond = absl::InfiniteDuration();
bd.weekday = 4;
bd.yearday = 365;
bd.offset = 0;
bd.is_dst = false;
bd.zone_abbr = "-00";
return bd;
}
inline absl::Time::Breakdown InfinitePastBreakdown() {
Time::Breakdown bd;
bd.year = std::numeric_limits<int64_t>::min();
bd.month = 1;
bd.day = 1;
bd.hour = 0;
bd.minute = 0;
bd.second = 0;
bd.subsecond = -absl::InfiniteDuration();
bd.weekday = 7;
bd.yearday = 1;
bd.offset = 0;
bd.is_dst = false;
bd.zone_abbr = "-00";
return bd;
}
inline absl::TimeZone::CivilInfo InfiniteFutureCivilInfo() {
TimeZone::CivilInfo ci;
ci.cs = CivilSecond::max();
ci.subsecond = InfiniteDuration();
ci.offset = 0;
ci.is_dst = false;
ci.zone_abbr = "-00";
return ci;
}
inline absl::TimeZone::CivilInfo InfinitePastCivilInfo() {
TimeZone::CivilInfo ci;
ci.cs = CivilSecond::min();
ci.subsecond = -InfiniteDuration();
ci.offset = 0;
ci.is_dst = false;
ci.zone_abbr = "-00";
return ci;
}
inline absl::TimeConversion InfiniteFutureTimeConversion() {
absl::TimeConversion tc;
tc.pre = tc.trans = tc.post = absl::InfiniteFuture();
tc.kind = absl::TimeConversion::UNIQUE;
tc.normalized = true;
return tc;
}
inline TimeConversion InfinitePastTimeConversion() {
absl::TimeConversion tc;
tc.pre = tc.trans = tc.post = absl::InfinitePast();
tc.kind = absl::TimeConversion::UNIQUE;
tc.normalized = true;
return tc;
}
// Makes a Time from sec, overflowing to InfiniteFuture/InfinitePast as
// necessary. If sec is min/max, then consult cs+tz to check for overlow.
Time MakeTimeWithOverflow(const cctz::time_point<cctz::seconds>& sec,
const cctz::civil_second& cs,
const cctz::time_zone& tz,
bool* normalized = nullptr) {
const auto max = cctz::time_point<cctz::seconds>::max();
const auto min = cctz::time_point<cctz::seconds>::min();
if (sec == max) {
const auto al = tz.lookup(max);
if (cs > al.cs) {
if (normalized) *normalized = true;
return absl::InfiniteFuture();
}
}
if (sec == min) {
const auto al = tz.lookup(min);
if (cs < al.cs) {
if (normalized) *normalized = true;
return absl::InfinitePast();
}
}
const auto hi = (sec - unix_epoch()).count();
return time_internal::FromUnixDuration(time_internal::MakeDuration(hi));
}
// Returns Mon=1..Sun=7.
inline int MapWeekday(const cctz::weekday& wd) {
switch (wd) {
case cctz::weekday::monday:
return 1;
case cctz::weekday::tuesday:
return 2;
case cctz::weekday::wednesday:
return 3;
case cctz::weekday::thursday:
return 4;
case cctz::weekday::friday:
return 5;
case cctz::weekday::saturday:
return 6;
case cctz::weekday::sunday:
return 7;
}
return 1;
}
bool FindTransition(const cctz::time_zone& tz,
bool (cctz::time_zone::*find_transition)(
const cctz::time_point<cctz::seconds>& tp,
cctz::time_zone::civil_transition* trans) const,
Time t, TimeZone::CivilTransition* trans) {
// Transitions are second-aligned, so we can discard any fractional part.
const auto tp = unix_epoch() + cctz::seconds(ToUnixSeconds(t));
cctz::time_zone::civil_transition tr;
if (!(tz.*find_transition)(tp, &tr)) return false;
trans->from = CivilSecond(tr.from);
trans->to = CivilSecond(tr.to);
return true;
}
} // namespace
//
// Time
//
absl::Time::Breakdown Time::In(absl::TimeZone tz) const {
if (*this == absl::InfiniteFuture()) return InfiniteFutureBreakdown();
if (*this == absl::InfinitePast()) return InfinitePastBreakdown();
const auto tp = unix_epoch() + cctz::seconds(time_internal::GetRepHi(rep_));
const auto al = cctz::time_zone(tz).lookup(tp);
const auto cs = al.cs;
const auto cd = cctz::civil_day(cs);
absl::Time::Breakdown bd;
bd.year = cs.year();
bd.month = cs.month();
bd.day = cs.day();
bd.hour = cs.hour();
bd.minute = cs.minute();
bd.second = cs.second();
bd.subsecond = time_internal::MakeDuration(0, time_internal::GetRepLo(rep_));
bd.weekday = MapWeekday(cctz::get_weekday(cd));
bd.yearday = cctz::get_yearday(cd);
bd.offset = al.offset;
bd.is_dst = al.is_dst;
bd.zone_abbr = al.abbr;
return bd;
}
//
// Conversions from/to other time types.
//
absl::Time FromUDate(double udate) {
return time_internal::FromUnixDuration(absl::Milliseconds(udate));
}
absl::Time FromUniversal(int64_t universal) {
return absl::UniversalEpoch() + 100 * absl::Nanoseconds(universal);
}
int64_t ToUnixNanos(Time t) {
if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 &&
time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 33 == 0) {
return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) *
1000 * 1000 * 1000) +
(time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4);
}
return FloorToUnit(time_internal::ToUnixDuration(t), absl::Nanoseconds(1));
}
int64_t ToUnixMicros(Time t) {
if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 &&
time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 43 == 0) {
return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) *
1000 * 1000) +
(time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4000);
}
return FloorToUnit(time_internal::ToUnixDuration(t), absl::Microseconds(1));
}
int64_t ToUnixMillis(Time t) {
if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 &&
time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 53 == 0) {
return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000) +
(time_internal::GetRepLo(time_internal::ToUnixDuration(t)) /
(4000 * 1000));
}
return FloorToUnit(time_internal::ToUnixDuration(t), absl::Milliseconds(1));
}
int64_t ToUnixSeconds(Time t) {
return time_internal::GetRepHi(time_internal::ToUnixDuration(t));
}
time_t ToTimeT(Time t) { return absl::ToTimespec(t).tv_sec; }
double ToUDate(Time t) {
return absl::FDivDuration(time_internal::ToUnixDuration(t),
absl::Milliseconds(1));
}
int64_t ToUniversal(absl::Time t) {
return absl::FloorToUnit(t - absl::UniversalEpoch(), absl::Nanoseconds(100));
}
absl::Time TimeFromTimespec(timespec ts) {
return time_internal::FromUnixDuration(absl::DurationFromTimespec(ts));
}
absl::Time TimeFromTimeval(timeval tv) {
return time_internal::FromUnixDuration(absl::DurationFromTimeval(tv));
}
timespec ToTimespec(Time t) {
timespec ts;
absl::Duration d = time_internal::ToUnixDuration(t);
if (!time_internal::IsInfiniteDuration(d)) {
ts.tv_sec = time_internal::GetRepHi(d);
if (ts.tv_sec == time_internal::GetRepHi(d)) { // no time_t narrowing
ts.tv_nsec = time_internal::GetRepLo(d) / 4; // floor
return ts;
}
}
if (d >= absl::ZeroDuration()) {
ts.tv_sec = std::numeric_limits<time_t>::max();
ts.tv_nsec = 1000 * 1000 * 1000 - 1;
} else {
ts.tv_sec = std::numeric_limits<time_t>::min();
ts.tv_nsec = 0;
}
return ts;
}
timeval ToTimeval(Time t) {
timeval tv;
timespec ts = absl::ToTimespec(t);
tv.tv_sec = ts.tv_sec;
if (tv.tv_sec != ts.tv_sec) { // narrowing
if (ts.tv_sec < 0) {
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
tv.tv_usec = 0;
} else {
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
tv.tv_usec = 1000 * 1000 - 1;
}
return tv;
}
tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t
return tv;
}
Time FromChrono(const std::chrono::system_clock::time_point& tp) {
return time_internal::FromUnixDuration(time_internal::FromChrono(
tp - std::chrono::system_clock::from_time_t(0)));
}
std::chrono::system_clock::time_point ToChronoTime(absl::Time t) {
using D = std::chrono::system_clock::duration;
auto d = time_internal::ToUnixDuration(t);
if (d < ZeroDuration()) d = Floor(d, FromChrono(D{1}));
return std::chrono::system_clock::from_time_t(0) +
time_internal::ToChronoDuration<D>(d);
}
//
// TimeZone
//
absl::TimeZone::CivilInfo TimeZone::At(Time t) const {
if (t == absl::InfiniteFuture()) return InfiniteFutureCivilInfo();
if (t == absl::InfinitePast()) return InfinitePastCivilInfo();
const auto ud = time_internal::ToUnixDuration(t);
const auto tp = unix_epoch() + cctz::seconds(time_internal::GetRepHi(ud));
const auto al = cz_.lookup(tp);
TimeZone::CivilInfo ci;
ci.cs = CivilSecond(al.cs);
ci.subsecond = time_internal::MakeDuration(0, time_internal::GetRepLo(ud));
ci.offset = al.offset;
ci.is_dst = al.is_dst;
ci.zone_abbr = al.abbr;
return ci;
}
absl::TimeZone::TimeInfo TimeZone::At(CivilSecond ct) const {
const cctz::civil_second cs(ct);
const auto cl = cz_.lookup(cs);
TimeZone::TimeInfo ti;
switch (cl.kind) {
case cctz::time_zone::civil_lookup::UNIQUE:
ti.kind = TimeZone::TimeInfo::UNIQUE;
break;
case cctz::time_zone::civil_lookup::SKIPPED:
ti.kind = TimeZone::TimeInfo::SKIPPED;
break;
case cctz::time_zone::civil_lookup::REPEATED:
ti.kind = TimeZone::TimeInfo::REPEATED;
break;
}
ti.pre = MakeTimeWithOverflow(cl.pre, cs, cz_);
ti.trans = MakeTimeWithOverflow(cl.trans, cs, cz_);
ti.post = MakeTimeWithOverflow(cl.post, cs, cz_);
return ti;
}
bool TimeZone::NextTransition(Time t, CivilTransition* trans) const {
return FindTransition(cz_, &cctz::time_zone::next_transition, t, trans);
}
bool TimeZone::PrevTransition(Time t, CivilTransition* trans) const {
return FindTransition(cz_, &cctz::time_zone::prev_transition, t, trans);
}
//
// Conversions involving time zones.
//
absl::TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,
int min, int sec, TimeZone tz) {
// Avoids years that are too extreme for CivilSecond to normalize.
if (year > 300000000000) return InfiniteFutureTimeConversion();
if (year < -300000000000) return InfinitePastTimeConversion();
const CivilSecond cs(year, mon, day, hour, min, sec);
const auto ti = tz.At(cs);
TimeConversion tc;
tc.pre = ti.pre;
tc.trans = ti.trans;
tc.post = ti.post;
switch (ti.kind) {
case TimeZone::TimeInfo::UNIQUE:
tc.kind = TimeConversion::UNIQUE;
break;
case TimeZone::TimeInfo::SKIPPED:
tc.kind = TimeConversion::SKIPPED;
break;
case TimeZone::TimeInfo::REPEATED:
tc.kind = TimeConversion::REPEATED;
break;
}
tc.normalized = false;
if (year != cs.year() || mon != cs.month() || day != cs.day() ||
hour != cs.hour() || min != cs.minute() || sec != cs.second()) {
tc.normalized = true;
}
return tc;
}
absl::Time FromTM(const struct tm& tm, absl::TimeZone tz) {
civil_year_t tm_year = tm.tm_year;
// Avoids years that are too extreme for CivilSecond to normalize.
if (tm_year > 300000000000ll) return InfiniteFuture();
if (tm_year < -300000000000ll) return InfinitePast();
int tm_mon = tm.tm_mon;
if (tm_mon == std::numeric_limits<int>::max()) {
tm_mon -= 12;
tm_year += 1;
}
const auto ti = tz.At(CivilSecond(tm_year + 1900, tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec));
return tm.tm_isdst == 0 ? ti.post : ti.pre;
}
struct tm ToTM(absl::Time t, absl::TimeZone tz) {
struct tm tm = {};
const auto ci = tz.At(t);
const auto& cs = ci.cs;
tm.tm_sec = cs.second();
tm.tm_min = cs.minute();
tm.tm_hour = cs.hour();
tm.tm_mday = cs.day();
tm.tm_mon = cs.month() - 1;
// Saturates tm.tm_year in cases of over/underflow, accounting for the fact
// that tm.tm_year is years since 1900.
if (cs.year() < std::numeric_limits<int>::min() + 1900) {
tm.tm_year = std::numeric_limits<int>::min();
} else if (cs.year() > std::numeric_limits<int>::max()) {
tm.tm_year = std::numeric_limits<int>::max() - 1900;
} else {
tm.tm_year = static_cast<int>(cs.year() - 1900);
}
switch (GetWeekday(cs)) {
case Weekday::sunday:
tm.tm_wday = 0;
break;
case Weekday::monday:
tm.tm_wday = 1;
break;
case Weekday::tuesday:
tm.tm_wday = 2;
break;
case Weekday::wednesday:
tm.tm_wday = 3;
break;
case Weekday::thursday:
tm.tm_wday = 4;
break;
case Weekday::friday:
tm.tm_wday = 5;
break;
case Weekday::saturday:
tm.tm_wday = 6;
break;
}
tm.tm_yday = GetYearDay(cs) - 1;
tm.tm_isdst = ci.is_dst ? 1 : 0;
return tm;
}
ABSL_NAMESPACE_END
} // namespace absl