|
|
|
// Copyright 2018 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
//
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// File: fixed_array.h
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// A `FixedArray<T>` represents a non-resizable array of `T` where the length of
|
|
|
|
// the array can be determined at run-time. It is a good replacement for
|
|
|
|
// non-standard and deprecated uses of `alloca()` and variable length arrays
|
|
|
|
// within the GCC extension. (See
|
|
|
|
// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
|
|
|
|
//
|
|
|
|
// `FixedArray` allocates small arrays inline, keeping performance fast by
|
|
|
|
// avoiding heap operations. It also helps reduce the chances of
|
|
|
|
// accidentally overflowing your stack if large input is passed to
|
|
|
|
// your function.
|
|
|
|
|
|
|
|
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
|
|
|
|
#define ABSL_CONTAINER_FIXED_ARRAY_H_
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <cassert>
|
|
|
|
#include <cstddef>
|
|
|
|
#include <initializer_list>
|
|
|
|
#include <iterator>
|
|
|
|
#include <limits>
|
|
|
|
#include <memory>
|
|
|
|
#include <new>
|
|
|
|
#include <type_traits>
|
|
|
|
|
|
|
|
#include "absl/algorithm/algorithm.h"
|
|
|
|
#include "absl/base/config.h"
|
|
|
|
#include "absl/base/dynamic_annotations.h"
|
|
|
|
#include "absl/base/internal/throw_delegate.h"
|
|
|
|
#include "absl/base/macros.h"
|
|
|
|
#include "absl/base/optimization.h"
|
|
|
|
#include "absl/base/port.h"
|
|
|
|
#include "absl/container/internal/compressed_tuple.h"
|
|
|
|
#include "absl/memory/memory.h"
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// FixedArray
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// A `FixedArray` provides a run-time fixed-size array, allocating a small array
|
|
|
|
// inline for efficiency.
|
|
|
|
//
|
|
|
|
// Most users should not specify an `inline_elements` argument and let
|
|
|
|
// `FixedArray` automatically determine the number of elements
|
|
|
|
// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
|
|
|
|
// `FixedArray` implementation will use inline storage for arrays with a
|
|
|
|
// length <= `inline_elements`.
|
|
|
|
//
|
|
|
|
// Note that a `FixedArray` constructed with a `size_type` argument will
|
|
|
|
// default-initialize its values by leaving trivially constructible types
|
|
|
|
// uninitialized (e.g. int, int[4], double), and others default-constructed.
|
|
|
|
// This matches the behavior of c-style arrays and `std::array`, but not
|
|
|
|
// `std::vector`.
|
|
|
|
template <typename T, size_t N = kFixedArrayUseDefault,
|
|
|
|
typename A = std::allocator<T>>
|
|
|
|
class FixedArray {
|
|
|
|
static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
|
|
|
|
"Arrays with unknown bounds cannot be used with FixedArray.");
|
|
|
|
|
|
|
|
static constexpr size_t kInlineBytesDefault = 256;
|
|
|
|
|
|
|
|
using AllocatorTraits = std::allocator_traits<A>;
|
|
|
|
// std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
|
|
|
|
// but this seems to be mostly pedantic.
|
|
|
|
template <typename Iterator>
|
|
|
|
using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
|
|
|
|
typename std::iterator_traits<Iterator>::iterator_category,
|
|
|
|
std::forward_iterator_tag>::value>;
|
|
|
|
static constexpr bool NoexceptCopyable() {
|
|
|
|
return std::is_nothrow_copy_constructible<StorageElement>::value &&
|
|
|
|
absl::allocator_is_nothrow<allocator_type>::value;
|
|
|
|
}
|
|
|
|
static constexpr bool NoexceptMovable() {
|
|
|
|
return std::is_nothrow_move_constructible<StorageElement>::value &&
|
|
|
|
absl::allocator_is_nothrow<allocator_type>::value;
|
|
|
|
}
|
|
|
|
static constexpr bool DefaultConstructorIsNonTrivial() {
|
|
|
|
return !absl::is_trivially_default_constructible<StorageElement>::value;
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
using allocator_type = typename AllocatorTraits::allocator_type;
|
|
|
|
using value_type = typename AllocatorTraits::value_type;
|
|
|
|
using pointer = typename AllocatorTraits::pointer;
|
|
|
|
using const_pointer = typename AllocatorTraits::const_pointer;
|
|
|
|
using reference = value_type&;
|
|
|
|
using const_reference = const value_type&;
|
|
|
|
using size_type = typename AllocatorTraits::size_type;
|
|
|
|
using difference_type = typename AllocatorTraits::difference_type;
|
|
|
|
using iterator = pointer;
|
|
|
|
using const_iterator = const_pointer;
|
|
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
|
|
|
|
|
|
static constexpr size_type inline_elements =
|
|
|
|
(N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
|
|
|
|
: static_cast<size_type>(N));
|
|
|
|
|
|
|
|
FixedArray(
|
|
|
|
const FixedArray& other,
|
|
|
|
const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
|
|
|
|
: FixedArray(other.begin(), other.end(), a) {}
|
|
|
|
|
|
|
|
FixedArray(
|
|
|
|
FixedArray&& other,
|
|
|
|
const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
|
|
|
|
: FixedArray(std::make_move_iterator(other.begin()),
|
|
|
|
std::make_move_iterator(other.end()), a) {}
|
|
|
|
|
|
|
|
// Creates an array object that can store `n` elements.
|
|
|
|
// Note that trivially constructible elements will be uninitialized.
|
|
|
|
explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
|
|
|
|
: storage_(n, a) {
|
|
|
|
if (DefaultConstructorIsNonTrivial()) {
|
|
|
|
memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
|
|
|
|
storage_.end());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates an array initialized with `n` copies of `val`.
|
|
|
|
FixedArray(size_type n, const value_type& val,
|
|
|
|
const allocator_type& a = allocator_type())
|
|
|
|
: storage_(n, a) {
|
|
|
|
memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
|
|
|
|
storage_.end(), val);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates an array initialized with the size and contents of `init_list`.
|
|
|
|
FixedArray(std::initializer_list<value_type> init_list,
|
|
|
|
const allocator_type& a = allocator_type())
|
|
|
|
: FixedArray(init_list.begin(), init_list.end(), a) {}
|
|
|
|
|
|
|
|
// Creates an array initialized with the elements from the input
|
|
|
|
// range. The array's size will always be `std::distance(first, last)`.
|
|
|
|
// REQUIRES: Iterator must be a forward_iterator or better.
|
|
|
|
template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
|
|
|
|
FixedArray(Iterator first, Iterator last,
|
|
|
|
const allocator_type& a = allocator_type())
|
|
|
|
: storage_(std::distance(first, last), a) {
|
|
|
|
memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
|
|
|
|
}
|
|
|
|
|
|
|
|
~FixedArray() noexcept {
|
|
|
|
for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
|
|
|
|
AllocatorTraits::destroy(storage_.alloc(), cur);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assignments are deleted because they break the invariant that the size of a
|
|
|
|
// `FixedArray` never changes.
|
|
|
|
void operator=(FixedArray&&) = delete;
|
|
|
|
void operator=(const FixedArray&) = delete;
|
|
|
|
|
|
|
|
// FixedArray::size()
|
|
|
|
//
|
|
|
|
// Returns the length of the fixed array.
|
|
|
|
size_type size() const { return storage_.size(); }
|
|
|
|
|
|
|
|
// FixedArray::max_size()
|
|
|
|
//
|
|
|
|
// Returns the largest possible value of `std::distance(begin(), end())` for a
|
|
|
|
// `FixedArray<T>`. This is equivalent to the most possible addressable bytes
|
|
|
|
// over the number of bytes taken by T.
|
|
|
|
constexpr size_type max_size() const {
|
|
|
|
return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::empty()
|
|
|
|
//
|
|
|
|
// Returns whether or not the fixed array is empty.
|
|
|
|
bool empty() const { return size() == 0; }
|
|
|
|
|
|
|
|
// FixedArray::memsize()
|
|
|
|
//
|
|
|
|
// Returns the memory size of the fixed array in bytes.
|
|
|
|
size_t memsize() const { return size() * sizeof(value_type); }
|
|
|
|
|
|
|
|
// FixedArray::data()
|
|
|
|
//
|
|
|
|
// Returns a const T* pointer to elements of the `FixedArray`. This pointer
|
|
|
|
// can be used to access (but not modify) the contained elements.
|
|
|
|
const_pointer data() const { return AsValueType(storage_.begin()); }
|
|
|
|
|
|
|
|
// Overload of FixedArray::data() to return a T* pointer to elements of the
|
|
|
|
// fixed array. This pointer can be used to access and modify the contained
|
|
|
|
// elements.
|
|
|
|
pointer data() { return AsValueType(storage_.begin()); }
|
|
|
|
|
|
|
|
// FixedArray::operator[]
|
|
|
|
//
|
|
|
|
// Returns a reference the ith element of the fixed array.
|
|
|
|
// REQUIRES: 0 <= i < size()
|
|
|
|
reference operator[](size_type i) {
|
|
|
|
ABSL_HARDENING_ASSERT(i < size());
|
|
|
|
return data()[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overload of FixedArray::operator()[] to return a const reference to the
|
|
|
|
// ith element of the fixed array.
|
|
|
|
// REQUIRES: 0 <= i < size()
|
|
|
|
const_reference operator[](size_type i) const {
|
|
|
|
ABSL_HARDENING_ASSERT(i < size());
|
|
|
|
return data()[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::at
|
|
|
|
//
|
|
|
|
// Bounds-checked access. Returns a reference to the ith element of the fixed
|
|
|
|
// array, or throws std::out_of_range
|
|
|
|
reference at(size_type i) {
|
|
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
|
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
|
|
|
|
}
|
|
|
|
return data()[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overload of FixedArray::at() to return a const reference to the ith element
|
|
|
|
// of the fixed array.
|
|
|
|
const_reference at(size_type i) const {
|
|
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
|
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
|
|
|
|
}
|
|
|
|
return data()[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::front()
|
|
|
|
//
|
|
|
|
// Returns a reference to the first element of the fixed array.
|
|
|
|
reference front() {
|
|
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
|
|
return data()[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overload of FixedArray::front() to return a reference to the first element
|
|
|
|
// of a fixed array of const values.
|
|
|
|
const_reference front() const {
|
|
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
|
|
return data()[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::back()
|
|
|
|
//
|
|
|
|
// Returns a reference to the last element of the fixed array.
|
|
|
|
reference back() {
|
|
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
|
|
return data()[size() - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overload of FixedArray::back() to return a reference to the last element
|
|
|
|
// of a fixed array of const values.
|
|
|
|
const_reference back() const {
|
|
|
|
ABSL_HARDENING_ASSERT(!empty());
|
|
|
|
return data()[size() - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::begin()
|
|
|
|
//
|
|
|
|
// Returns an iterator to the beginning of the fixed array.
|
|
|
|
iterator begin() { return data(); }
|
|
|
|
|
|
|
|
// Overload of FixedArray::begin() to return a const iterator to the
|
|
|
|
// beginning of the fixed array.
|
|
|
|
const_iterator begin() const { return data(); }
|
|
|
|
|
|
|
|
// FixedArray::cbegin()
|
|
|
|
//
|
|
|
|
// Returns a const iterator to the beginning of the fixed array.
|
|
|
|
const_iterator cbegin() const { return begin(); }
|
|
|
|
|
|
|
|
// FixedArray::end()
|
|
|
|
//
|
|
|
|
// Returns an iterator to the end of the fixed array.
|
|
|
|
iterator end() { return data() + size(); }
|
|
|
|
|
|
|
|
// Overload of FixedArray::end() to return a const iterator to the end of the
|
|
|
|
// fixed array.
|
|
|
|
const_iterator end() const { return data() + size(); }
|
|
|
|
|
|
|
|
// FixedArray::cend()
|
|
|
|
//
|
|
|
|
// Returns a const iterator to the end of the fixed array.
|
|
|
|
const_iterator cend() const { return end(); }
|
|
|
|
|
|
|
|
// FixedArray::rbegin()
|
|
|
|
//
|
|
|
|
// Returns a reverse iterator from the end of the fixed array.
|
|
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
|
|
|
|
|
|
// Overload of FixedArray::rbegin() to return a const reverse iterator from
|
|
|
|
// the end of the fixed array.
|
|
|
|
const_reverse_iterator rbegin() const {
|
|
|
|
return const_reverse_iterator(end());
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::crbegin()
|
|
|
|
//
|
|
|
|
// Returns a const reverse iterator from the end of the fixed array.
|
|
|
|
const_reverse_iterator crbegin() const { return rbegin(); }
|
|
|
|
|
|
|
|
// FixedArray::rend()
|
|
|
|
//
|
|
|
|
// Returns a reverse iterator from the beginning of the fixed array.
|
|
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
|
|
|
|
|
|
// Overload of FixedArray::rend() for returning a const reverse iterator
|
|
|
|
// from the beginning of the fixed array.
|
|
|
|
const_reverse_iterator rend() const {
|
|
|
|
return const_reverse_iterator(begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
// FixedArray::crend()
|
|
|
|
//
|
|
|
|
// Returns a reverse iterator from the beginning of the fixed array.
|
|
|
|
const_reverse_iterator crend() const { return rend(); }
|
|
|
|
|
|
|
|
// FixedArray::fill()
|
|
|
|
//
|
|
|
|
// Assigns the given `value` to all elements in the fixed array.
|
|
|
|
void fill(const value_type& val) { std::fill(begin(), end(), val); }
|
|
|
|
|
|
|
|
// Relational operators. Equality operators are elementwise using
|
|
|
|
// `operator==`, while order operators order FixedArrays lexicographically.
|
|
|
|
friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
|
|
|
|
return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
|
|
|
|
return !(lhs == rhs);
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
|
|
|
|
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
|
|
|
|
rhs.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
|
|
|
|
return rhs < lhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
|
|
|
|
return !(rhs < lhs);
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
|
|
|
|
return !(lhs < rhs);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename H>
|
|
|
|
friend H AbslHashValue(H h, const FixedArray& v) {
|
|
|
|
return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
|
|
|
|
v.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// StorageElement
|
|
|
|
//
|
|
|
|
// For FixedArrays with a C-style-array value_type, StorageElement is a POD
|
|
|
|
// wrapper struct called StorageElementWrapper that holds the value_type
|
|
|
|
// instance inside. This is needed for construction and destruction of the
|
|
|
|
// entire array regardless of how many dimensions it has. For all other cases,
|
|
|
|
// StorageElement is just an alias of value_type.
|
|
|
|
//
|
|
|
|
// Maintainer's Note: The simpler solution would be to simply wrap value_type
|
|
|
|
// in a struct whether it's an array or not. That causes some paranoid
|
|
|
|
// diagnostics to misfire, believing that 'data()' returns a pointer to a
|
|
|
|
// single element, rather than the packed array that it really is.
|
|
|
|
// e.g.:
|
|
|
|
//
|
|
|
|
// FixedArray<char> buf(1);
|
|
|
|
// sprintf(buf.data(), "foo");
|
|
|
|
//
|
|
|
|
// error: call to int __builtin___sprintf_chk(etc...)
|
|
|
|
// will always overflow destination buffer [-Werror]
|
|
|
|
//
|
|
|
|
template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
|
|
|
|
size_t InnerN = std::extent<OuterT>::value>
|
|
|
|
struct StorageElementWrapper {
|
|
|
|
InnerT array[InnerN];
|
|
|
|
};
|
|
|
|
|
|
|
|
using StorageElement =
|
|
|
|
absl::conditional_t<std::is_array<value_type>::value,
|
|
|
|
StorageElementWrapper<value_type>, value_type>;
|
|
|
|
|
|
|
|
static pointer AsValueType(pointer ptr) { return ptr; }
|
|
|
|
static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
|
|
|
|
return std::addressof(ptr->array);
|
|
|
|
}
|
|
|
|
|
|
|
|
static_assert(sizeof(StorageElement) == sizeof(value_type), "");
|
|
|
|
static_assert(alignof(StorageElement) == alignof(value_type), "");
|
|
|
|
|
|
|
|
class NonEmptyInlinedStorage {
|
|
|
|
public:
|
|
|
|
StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
|
|
|
|
void AnnotateConstruct(size_type n);
|
|
|
|
void AnnotateDestruct(size_type n);
|
|
|
|
|
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
void* RedzoneBegin() { return &redzone_begin_; }
|
|
|
|
void* RedzoneEnd() { return &redzone_end_ + 1; }
|
|
|
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
|
|
|
|
private:
|
|
|
|
ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
|
|
|
|
alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
|
|
|
|
ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
|
|
|
|
};
|
|
|
|
|
|
|
|
class EmptyInlinedStorage {
|
|
|
|
public:
|
|
|
|
StorageElement* data() { return nullptr; }
|
|
|
|
void AnnotateConstruct(size_type) {}
|
|
|
|
void AnnotateDestruct(size_type) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
using InlinedStorage =
|
|
|
|
absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
|
|
|
|
NonEmptyInlinedStorage>;
|
|
|
|
|
|
|
|
// Storage
|
|
|
|
//
|
|
|
|
// An instance of Storage manages the inline and out-of-line memory for
|
|
|
|
// instances of FixedArray. This guarantees that even when construction of
|
|
|
|
// individual elements fails in the FixedArray constructor body, the
|
|
|
|
// destructor for Storage will still be called and out-of-line memory will be
|
|
|
|
// properly deallocated.
|
|
|
|
//
|
|
|
|
class Storage : public InlinedStorage {
|
|
|
|
public:
|
|
|
|
Storage(size_type n, const allocator_type& a)
|
|
|
|
: size_alloc_(n, a), data_(InitializeData()) {}
|
|
|
|
|
|
|
|
~Storage() noexcept {
|
|
|
|
if (UsingInlinedStorage(size())) {
|
|
|
|
InlinedStorage::AnnotateDestruct(size());
|
|
|
|
} else {
|
|
|
|
AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size_type size() const { return size_alloc_.template get<0>(); }
|
|
|
|
StorageElement* begin() const { return data_; }
|
|
|
|
StorageElement* end() const { return begin() + size(); }
|
|
|
|
allocator_type& alloc() { return size_alloc_.template get<1>(); }
|
|
|
|
|
|
|
|
private:
|
|
|
|
static bool UsingInlinedStorage(size_type n) {
|
|
|
|
return n <= inline_elements;
|
|
|
|
}
|
|
|
|
|
Workaround for ASAN stack safety analysis problem with FixedArray container annotations.
The problem is that the underlying storage adds redzone after the actual data so from compiler's perspective it looks like a valid memory. In the outlined version the memory is returned in call.i.i with unknown size so the access check can't be removed. The workaround is to always outline the call to InitializeData for ASAN builds.
Outlined version:
%call.i.i = call noundef i32* @absl::FixedArray<int, 4ul, std::__u::allocator<int> >::Storage::InitializeData()(...), !dbg !28
store i32* %call.i.i, i32** %data_.i.i, align 8, !dbg !27
%arrayidx = getelementptr inbounds i32, i32* %call.i.i, i64 5, !dbg !29
%24 = bitcast i32* %arrayidx to i8*, !dbg !29
call void @llvm.asan.check.memaccess(i8* %24, i32 36), !dbg !29
store i32 0, i32* %arrayidx, align 4, !dbg !29
Inlined version:
%arrayidx = getelementptr inbounds %"class.absl::FixedArray", %"class.absl::FixedArray"* %7, i64 0, i32 0, i32 0, i32 1, i64 20, !dbg !40
%27 = bitcast i8* %arrayidx to i32*, !dbg !40
>>>>>>>>>>>>>>> call to @llvm.asan.check.memaccess removed <<<<<<<<<<<<<<
store i32 0, i32* %27, align 4, !dbg !40
Workaround for ASAN stack safety analysis problem with FixedArray container annotations.
PiperOrigin-RevId: 471583635
Change-Id: I0d74eed5782a1cbd340ca4aca1bce71b63b06d43
2 years ago
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
ABSL_ATTRIBUTE_NOINLINE
|
|
|
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
StorageElement* InitializeData() {
|
|
|
|
if (UsingInlinedStorage(size())) {
|
|
|
|
InlinedStorage::AnnotateConstruct(size());
|
|
|
|
return InlinedStorage::data();
|
|
|
|
} else {
|
|
|
|
return reinterpret_cast<StorageElement*>(
|
|
|
|
AllocatorTraits::allocate(alloc(), size()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
|
|
|
|
container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
|
|
|
|
StorageElement* data_;
|
|
|
|
};
|
|
|
|
|
|
|
|
Storage storage_;
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
|
|
|
|
template <typename T, size_t N, typename A>
|
|
|
|
constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
|
|
|
|
|
|
|
|
template <typename T, size_t N, typename A>
|
|
|
|
constexpr typename FixedArray<T, N, A>::size_type
|
|
|
|
FixedArray<T, N, A>::inline_elements;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
template <typename T, size_t N, typename A>
|
|
|
|
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
|
|
|
|
typename FixedArray<T, N, A>::size_type n) {
|
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
if (!n) return;
|
|
|
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
|
|
|
|
data() + n);
|
|
|
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
|
|
|
|
RedzoneBegin());
|
|
|
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
static_cast<void>(n); // Mark used when not in asan mode
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, size_t N, typename A>
|
|
|
|
void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
|
|
|
|
typename FixedArray<T, N, A>::size_type n) {
|
|
|
|
#ifdef ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
if (!n) return;
|
|
|
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
|
|
|
|
RedzoneEnd());
|
|
|
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
|
|
|
|
data());
|
|
|
|
#endif // ABSL_HAVE_ADDRESS_SANITIZER
|
|
|
|
static_cast<void>(n); // Mark used when not in asan mode
|
|
|
|
}
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_
|