Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
4.8 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
#define ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
#include <stdint.h>
#include "absl/base/config.h"
#include "absl/base/macros.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
// ExponentialBiased provides a small and fast random number generator for a
// rounded exponential distribution. This generator manages very little state,
// and imposes no synchronization overhead. This makes it useful in specialized
// scenarios requiring minimum overhead, such as stride based periodic sampling.
//
// ExponentialBiased provides two closely related functions, GetSkipCount() and
// GetStride(), both returning a rounded integer defining a number of events
// required before some event with a given mean probability occurs.
//
// The distribution is useful to generate a random wait time or some periodic
// event with a given mean probability. For example, if an action is supposed to
// happen on average once every 'N' events, then we can get a random 'stride'
// counting down how long before the event to happen. For example, if we'd want
// to sample one in every 1000 'Frobber' calls, our code could look like this:
//
// Frobber::Frobber() {
// stride_ = exponential_biased_.GetStride(1000);
// }
//
// void Frobber::Frob(int arg) {
// if (--stride == 0) {
// SampleFrob(arg);
// stride_ = exponential_biased_.GetStride(1000);
// }
// ...
// }
//
// The rounding of the return value creates a bias, especially for smaller means
// where the distribution of the fraction is not evenly distributed. We correct
// this bias by tracking the fraction we rounded up or down on each iteration,
// effectively tracking the distance between the cumulative value, and the
// rounded cumulative value. For example, given a mean of 2:
//
// raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923
// raw = 0.14624, cumulative = 1.77701, rounded = 2, bias = 0.14624
// raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805
// raw = 0.24206, cumulative = 6.95101, rounded = 7, bias = 0.24206
// etc...
//
// Adjusting with rounding bias is relatively trivial:
//
// double value = bias_ + exponential_distribution(mean)();
// double rounded_value = std::round(value);
// bias_ = value - rounded_value;
// return rounded_value;
//
// This class is thread-compatible.
class ExponentialBiased {
public:
// The number of bits set by NextRandom.
static constexpr int kPrngNumBits = 48;
// `GetSkipCount()` returns the number of events to skip before some chosen
// event happens. For example, randomly tossing a coin, we will on average
// throw heads once before we get tails. We can simulate random coin tosses
// using GetSkipCount() as:
//
// ExponentialBiased eb;
// for (...) {
// int number_of_heads_before_tail = eb.GetSkipCount(1);
// for (int flips = 0; flips < number_of_heads_before_tail; ++flips) {
// printf("head...");
// }
// printf("tail\n");
// }
//
int64_t GetSkipCount(int64_t mean);
// GetStride() returns the number of events required for a specific event to
// happen. See the class comments for a usage example. `GetStride()` is
// equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or
// `GetSkipCount()` depends mostly on what best fits the use case.
int64_t GetStride(int64_t mean);
// Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
//
// This is public to enable testing.
static uint64_t NextRandom(uint64_t rnd);
private:
void Initialize();
uint64_t rng_{0};
double bias_{0};
bool initialized_{false};
};
// Returns the next prng value.
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48
// This is the lrand64 generator.
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
const uint64_t prng_mult = uint64_t{0x5DEECE66D};
const uint64_t prng_add = 0xB;
const uint64_t prng_mod_power = 48;
const uint64_t prng_mod_mask =
~((~static_cast<uint64_t>(0)) << prng_mod_power);
return (prng_mult * rnd + prng_add) & prng_mod_mask;
}
} // namespace base_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_