Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

490 lines
18 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/distributions.h"
#include <cmath>
#include <cstdint>
#include <random>
#include <vector>
#include "gtest/gtest.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/random.h"
namespace {
constexpr int kSize = 400000;
class RandomDistributionsTest : public testing::Test {};
TEST_F(RandomDistributionsTest, UniformBoundFunctions) {
using absl::IntervalClosedClosed;
using absl::IntervalClosedOpen;
using absl::IntervalOpenClosed;
using absl::IntervalOpenOpen;
using absl::random_internal::uniform_lower_bound;
using absl::random_internal::uniform_upper_bound;
// absl::uniform_int_distribution natively assumes IntervalClosedClosed
// absl::uniform_real_distribution natively assumes IntervalClosedOpen
EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, 0, 100), 1);
EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, 0, 100), 1);
EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, 0, 1.0), 0);
EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, 0, 1.0), 0);
EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, 0, 1.0), 0);
EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, 0, 1.0), 0);
EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, 0, 100), 0);
EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, 0, 100), 0);
EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, 0, 1.0), 0);
EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, 0, 1.0), 0);
EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, 0, 1.0), 0);
EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, 0, 1.0), 0);
EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, 0, 100), 99);
EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, 0, 100), 99);
EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, 0, 1.0), 1.0);
EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, 0, 1.0), 1.0);
EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, 0, 1.0), 1.0);
EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, 0, 1.0), 1.0);
EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, 0, 100), 100);
EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0, 100), 100);
EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, 0, 1.0), 1.0);
EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, 0, 1.0), 1.0);
EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, 0, 1.0), 1.0);
EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, 0, 1.0), 1.0);
// Negative value tests
EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, -100, -1), -99);
EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, -100, -1), -99);
EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, -2.0, -1.0), -2.0);
EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, -2.0, -1.0), -2.0);
EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, -2.0, -1.0), -2.0);
EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, -2.0, -1.0), -2.0);
EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, -100, -1), -100);
EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, -100, -1), -100);
EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, -2.0, -1.0), -2.0);
EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, -2.0, -1.0), -2.0);
EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, -2.0, -1.0),
-2.0);
EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, -2.0, -1.0), -2.0);
EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, -100, -1), -2);
EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, -100, -1), -2);
EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, -2.0, -1.0), -1.0);
EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, -2.0, -1.0), -1.0);
EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, -2.0, -1.0), -1.0);
EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, -2.0, -1.0), -1.0);
EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, -100, -1), -1);
EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, -100, -1), -1);
EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, -2.0, -1.0), -1.0);
EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, -2.0, -1.0), -1.0);
EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, -2.0, -1.0), -1.0);
EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, -2.0, -1.0),
-1.0);
// Edge cases: the next value toward itself is itself.
const double d = 1.0;
const float f = 1.0;
EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, d, d), d);
EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, f, f), f);
EXPECT_GT(uniform_lower_bound(IntervalOpenClosed, 1.0, 2.0), 1.0);
EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, +0.0), 1.0);
EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -0.0), 1.0);
EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0), 1.0);
EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0f,
std::numeric_limits<float>::max()),
std::numeric_limits<float>::max());
EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0,
std::numeric_limits<double>::max()),
std::numeric_limits<double>::max());
}
struct Invalid {};
template <typename A, typename B>
auto InferredUniformReturnT(int)
-> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename>
Invalid InferredUniformReturnT(...);
template <typename TagType, typename A, typename B>
auto InferredTaggedUniformReturnT(int)
-> decltype(absl::Uniform(std::declval<TagType>(),
std::declval<absl::InsecureBitGen&>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename, typename>
Invalid InferredTaggedUniformReturnT(...);
// Given types <A, B, Expect>, CheckArgsInferType() verifies that
//
// absl::Uniform(gen, A{}, B{})
//
// returns the type "Expect".
//
// This interface can also be used to assert that a given absl::Uniform()
// overload does not exist / will not compile. Given types <A, B>, the
// expression
//
// decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
//
// will not compile, leaving the definition of InferredUniformReturnT<A, B> to
// resolve (via SFINAE) to the overload which returns type "Invalid". This
// allows tests to assert that an invocation such as
//
// absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
//
// should not compile, since neither type, float nor int, can precisely
// represent both endpoint-values. Writing:
//
// CheckArgsInferType<float, int, Invalid>()
//
// will assert that this overload does not exist.
template <typename A, typename B, typename Expect>
void CheckArgsInferType() {
static_assert(
absl::conjunction<
std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
std::is_same<Expect,
decltype(InferredUniformReturnT<B, A>(0))>>::value,
"");
static_assert(
absl::conjunction<
std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
absl::IntervalOpenOpenTag, A, B>(0))>,
std::is_same<Expect,
decltype(InferredTaggedUniformReturnT<
absl::IntervalOpenOpenTag, B, A>(0))>>::value,
"");
}
template <typename A, typename B, typename ExplicitRet>
auto ExplicitUniformReturnT(int) -> decltype(
absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename, typename ExplicitRet>
Invalid ExplicitUniformReturnT(...);
template <typename TagType, typename A, typename B, typename ExplicitRet>
auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename, typename, typename ExplicitRet>
Invalid ExplicitTaggedUniformReturnT(...);
// Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
//
// absl::Uniform<Expect>(gen, A{}, B{})
//
// returns the type "Expect", and that the function-overload has the signature
//
// Expect(URBG&, Expect, Expect)
template <typename A, typename B, typename Expect>
void CheckArgsReturnExpectedType() {
static_assert(
absl::conjunction<
std::is_same<Expect,
decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
0))>>::value,
"");
static_assert(
absl::conjunction<
std::is_same<Expect,
decltype(ExplicitTaggedUniformReturnT<
absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
absl::IntervalOpenOpenTag, B, A,
Expect>(0))>>::value,
"");
}
TEST_F(RandomDistributionsTest, UniformTypeInference) {
// Infers common types.
CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
CheckArgsInferType<int16_t, int16_t, int16_t>();
CheckArgsInferType<int32_t, int32_t, int32_t>();
CheckArgsInferType<int64_t, int64_t, int64_t>();
CheckArgsInferType<float, float, float>();
CheckArgsInferType<double, double, double>();
// Explicitly-specified return-values override inferences.
CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
CheckArgsReturnExpectedType<int16_t, int32_t, double>();
CheckArgsReturnExpectedType<float, float, double>();
CheckArgsReturnExpectedType<int, int, int16_t>();
// Properly promotes uint16_t.
CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
CheckArgsInferType<uint16_t, int32_t, int32_t>();
CheckArgsInferType<uint16_t, int64_t, int64_t>();
CheckArgsInferType<uint16_t, float, float>();
CheckArgsInferType<uint16_t, double, double>();
// Properly promotes int16_t.
CheckArgsInferType<int16_t, int32_t, int32_t>();
CheckArgsInferType<int16_t, int64_t, int64_t>();
CheckArgsInferType<int16_t, float, float>();
CheckArgsInferType<int16_t, double, double>();
// Invalid (u)int16_t-pairings do not compile.
// See "CheckArgsInferType" comments above, for how this is achieved.
CheckArgsInferType<uint16_t, int16_t, Invalid>();
CheckArgsInferType<int16_t, uint32_t, Invalid>();
CheckArgsInferType<int16_t, uint64_t, Invalid>();
// Properly promotes uint32_t.
CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
CheckArgsInferType<uint32_t, int64_t, int64_t>();
CheckArgsInferType<uint32_t, double, double>();
// Properly promotes int32_t.
CheckArgsInferType<int32_t, int64_t, int64_t>();
CheckArgsInferType<int32_t, double, double>();
// Invalid (u)int32_t-pairings do not compile.
CheckArgsInferType<uint32_t, int32_t, Invalid>();
CheckArgsInferType<int32_t, uint64_t, Invalid>();
CheckArgsInferType<int32_t, float, Invalid>();
CheckArgsInferType<uint32_t, float, Invalid>();
// Invalid (u)int64_t-pairings do not compile.
CheckArgsInferType<uint64_t, int64_t, Invalid>();
CheckArgsInferType<int64_t, float, Invalid>();
CheckArgsInferType<int64_t, double, Invalid>();
// Properly promotes float.
CheckArgsInferType<float, double, double>();
// Examples.
absl::InsecureBitGen gen;
EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
static_cast<uint16_t>(0), 1.0f));
EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
}
TEST_F(RandomDistributionsTest, UniformNoBounds) {
absl::InsecureBitGen gen;
absl::Uniform<uint8_t>(gen);
absl::Uniform<uint16_t>(gen);
absl::Uniform<uint32_t>(gen);
absl::Uniform<uint64_t>(gen);
}
// TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest, UniformReal) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Uniform(gen, 0, 1.0);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.5, moments.mean, 0.02);
EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
EXPECT_NEAR(0.0, moments.skewness, 0.02);
EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
}
TEST_F(RandomDistributionsTest, UniformInt) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
const int64_t kMax = 1000000000000ll;
int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
// convert to double.
values[i] = static_cast<double>(j) / static_cast<double>(kMax);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.5, moments.mean, 0.02);
EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
EXPECT_NEAR(0.0, moments.skewness, 0.02);
EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
/*
// NOTE: These are not supported by absl::Uniform, which is specialized
// on integer and real valued types.
enum E { E0, E1 }; // enum
enum S : int { S0, S1 }; // signed enum
enum U : unsigned int { U0, U1 }; // unsigned enum
absl::Uniform(gen, E0, E1);
absl::Uniform(gen, S0, S1);
absl::Uniform(gen, U0, U1);
*/
}
TEST_F(RandomDistributionsTest, Exponential) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Exponential<double>(gen);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(1.0, moments.mean, 0.02);
EXPECT_NEAR(1.0, moments.variance, 0.025);
EXPECT_NEAR(2.0, moments.skewness, 0.1);
EXPECT_LT(5.0, moments.kurtosis);
}
TEST_F(RandomDistributionsTest, PoissonDefault) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Poisson<int64_t>(gen);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(1.0, moments.mean, 0.02);
EXPECT_NEAR(1.0, moments.variance, 0.02);
EXPECT_NEAR(1.0, moments.skewness, 0.025);
EXPECT_LT(2.0, moments.kurtosis);
}
TEST_F(RandomDistributionsTest, PoissonLarge) {
constexpr double kMean = 100000000.0;
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Poisson<int64_t>(gen, kMean);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
EXPECT_LT(2.0, moments.kurtosis);
}
TEST_F(RandomDistributionsTest, Bernoulli) {
constexpr double kP = 0.5151515151;
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Bernoulli(gen, kP);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(kP, moments.mean, 0.01);
}
TEST_F(RandomDistributionsTest, Beta) {
constexpr double kAlpha = 2.0;
constexpr double kBeta = 3.0;
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Beta(gen, kAlpha, kBeta);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.4, moments.mean, 0.01);
}
TEST_F(RandomDistributionsTest, Zipf) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Zipf<int64_t>(gen, 100);
}
// The mean of a zipf distribution is: H(N, s-1) / H(N,s).
// Given the parameter v = 1, this gives the following function:
// (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
}
TEST_F(RandomDistributionsTest, Gaussian) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Gaussian<double>(gen);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.0, moments.mean, 0.02);
EXPECT_NEAR(1.0, moments.variance, 0.04);
EXPECT_NEAR(0, moments.skewness, 0.2);
EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
}
TEST_F(RandomDistributionsTest, LogUniform) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
}
// The mean is the sum of the fractional means of the uniform distributions:
// [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
// [64..127][128..255][256..511][512..1023]
const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
(2.0 * 11.0);
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(mean, moments.mean, 2) << moments;
}
} // namespace