Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

585 lines
25 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/time/clock.h"
#include "absl/base/attributes.h"
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
#include "absl/base/optimization.h"
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
#ifdef _WIN32
#include <windows.h>
#endif
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <cstdint>
#include <ctime>
#include <limits>
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/unscaledcycleclock.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/base/thread_annotations.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
Time Now() {
// TODO(bww): Get a timespec instead so we don't have to divide.
int64_t n = absl::GetCurrentTimeNanos();
if (n >= 0) {
return time_internal::FromUnixDuration(
time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
}
return time_internal::FromUnixDuration(absl::Nanoseconds(n));
}
ABSL_NAMESPACE_END
} // namespace absl
// Decide if we should use the fast GetCurrentTimeNanos() algorithm
// based on the cyclecounter, otherwise just get the time directly
// from the OS on every call. This can be chosen at compile-time via
// -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
#ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
#if ABSL_USE_UNSCALED_CYCLECLOCK
#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 1
#else
#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
#endif
#endif
#if defined(__APPLE__) || defined(_WIN32)
#include "absl/time/internal/get_current_time_chrono.inc"
#else
#include "absl/time/internal/get_current_time_posix.inc"
#endif
// Allows override by test.
#ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
::absl::time_internal::GetCurrentTimeNanosFromSystem()
#endif
#if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
namespace absl {
ABSL_NAMESPACE_BEGIN
Export of internal Abseil changes -- a5af5874c1c5cc02bd2a748d455321f82b6f2a93 by Andy Getzendanner <durandal@google.com>: fix compile fails with asan and -Wredundant-decls Import of https://github.com/abseil/abseil-cpp/pull/801 PiperOrigin-RevId: 336693223 -- ed9df42ab2b742386c6692c2bed015374c919d9c by Derek Mauro <dmauro@google.com>: Fix integer conversion warning Fixes #814 PiperOrigin-RevId: 336651814 -- 0ab4c23884e72dce17b67c1eb520f9dbb802565d by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 336585378 -- eba0e3dccd52a6e91bcff84075bef0affc650b74 by Matt Kulukundis <kfm@google.com>: Add bitset operations to Futex helper. PiperOrigin-RevId: 336409368 -- 8b0709a8b4500bf5f0af4b602d76a298d81645e8 by Abseil Team <absl-team@google.com>: Fix code indentation in a comment. PiperOrigin-RevId: 336368167 -- bc3961c87a7e7760c10319a5b0349c279f7ae3ad by Samuel Benzaquen <sbenza@google.com>: Improve performance of the registry: - Reduce contention - Reduce memory usage for each flag by `6*sizeof(void*)`. - Replace one immortal allocation per-flag with a single one for all the flags - Slightly improve single-threaded performance by avoiding the std::map indirections. PiperOrigin-RevId: 336365904 -- 264ad9f28f935aad8b6b1437f8bf804fa9104346 by Abseil Team <absl-team@google.com>: Fix typo in comment on absl::Condition. PiperOrigin-RevId: 336311680 -- b5b808a8c75ca0df7b09eff9a423ec171d80f771 by Derek Mauro <dmauro@google.com>: Add missing Apache license headers PiperOrigin-RevId: 336294980 -- 89446c3a4793df8b95060385cf3e219357c3db1d by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 336287465 -- 57c8be4e294881bc79a6a44b8e4bf7ecbb19b9b9 by Matt Kulukundis <kfm@google.com>: Extract Futex from an implementation detail of Wait to a private interface. PiperOrigin-RevId: 336123209 GitOrigin-RevId: a5af5874c1c5cc02bd2a748d455321f82b6f2a93 Change-Id: Ie5a0ebe28e571814e3e11d4c05ca308523ccf311
4 years ago
int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); }
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
ABSL_NAMESPACE_END
} // namespace absl
#else // Use the cyclecounter-based implementation below.
// Allows override by test.
#ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
#define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace time_internal {
// This is a friend wrapper around UnscaledCycleClock::Now()
// (needed to access UnscaledCycleClock).
class UnscaledCycleClockWrapperForGetCurrentTime {
public:
static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
};
} // namespace time_internal
// uint64_t is used in this module to provide an extra bit in multiplications
// ---------------------------------------------------------------------
// An implementation of reader-write locks that use no atomic ops in the read
// case. This is a generalization of Lamport's method for reading a multiword
// clock. Increment a word on each write acquisition, using the low-order bit
// as a spinlock; the word is the high word of the "clock". Readers read the
// high word, then all other data, then the high word again, and repeat the
// read if the reads of the high words yields different answers, or an odd
// value (either case suggests possible interference from a writer).
// Here we use a spinlock to ensure only one writer at a time, rather than
// spinning on the bottom bit of the word to benefit from SpinLock
// spin-delay tuning.
// Acquire seqlock (*seq) and return the value to be written to unlock.
static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
// We put a release fence between update to *seq and writes to shared data.
// Thus all stores to shared data are effectively release operations and
// update to *seq above cannot be re-ordered past any of them. Note that
// this barrier is not for the fetch_add above. A release barrier for the
// fetch_add would be before it, not after.
std::atomic_thread_fence(std::memory_order_release);
return x + 2; // original word plus 2
}
// Release seqlock (*seq) by writing x to it---a value previously returned by
// SeqAcquire.
static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
// The unlock store to *seq must have release ordering so that all
// updates to shared data must finish before this store.
seq->store(x, std::memory_order_release); // release lock for readers
}
// ---------------------------------------------------------------------
// "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
enum { kScale = 30 };
// The minimum interval between samples of the time base.
// We pick enough time to amortize the cost of the sample,
// to get a reasonably accurate cycle counter rate reading,
// and not so much that calculations will overflow 64-bits.
static const uint64_t kMinNSBetweenSamples = 2000 << 20;
// We require that kMinNSBetweenSamples shifted by kScale
// have at least a bit left over for 64-bit calculations.
static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
kMinNSBetweenSamples,
"cannot represent kMaxBetweenSamplesNSScaled");
// data from a sample of the kernel's time value
struct TimeSampleAtomic {
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
std::atomic<uint64_t> raw_ns{0}; // raw kernel time
std::atomic<uint64_t> base_ns{0}; // our estimate of time
std::atomic<uint64_t> base_cycles{0}; // cycle counter reading
std::atomic<uint64_t> nsscaled_per_cycle{0}; // cycle period
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// cycles before we'll sample again (a scaled reciprocal of the period,
// to avoid a division on the fast path).
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
std::atomic<uint64_t> min_cycles_per_sample{0};
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
};
// Same again, but with non-atomic types
struct TimeSample {
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
uint64_t raw_ns = 0; // raw kernel time
uint64_t base_ns = 0; // our estimate of time
uint64_t base_cycles = 0; // cycle counter reading
uint64_t nsscaled_per_cycle = 0; // cycle period
uint64_t min_cycles_per_sample = 0; // approx cycles before next sample
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
};
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
struct ABSL_CACHELINE_ALIGNED TimeState {
std::atomic<uint64_t> seq{0};
TimeSampleAtomic last_sample; // the last sample; under seq
// The following counters are used only by the test code.
int64_t stats_initializations{0};
int64_t stats_reinitializations{0};
int64_t stats_calibrations{0};
int64_t stats_slow_paths{0};
int64_t stats_fast_slow_paths{0};
uint64_t last_now_cycles GUARDED_BY(lock){0};
// Used by GetCurrentTimeNanosFromKernel().
// We try to read clock values at about the same time as the kernel clock.
// This value gets adjusted up or down as estimate of how long that should
// take, so we can reject attempts that take unusually long.
std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
// Number of times in a row we've seen a kernel time call take substantially
// less than approx_syscall_time_in_cycles.
std::atomic<uint32_t> kernel_time_seen_smaller{0};
// A reader-writer lock protecting the static locations below.
// See SeqAcquire() and SeqRelease() above.
absl::base_internal::SpinLock lock{absl::kConstInit,
base_internal::SCHEDULE_KERNEL_ONLY};
};
ABSL_CONST_INIT static TimeState time_state{};
// Return the time in ns as told by the kernel interface. Place in *cycleclock
// the value of the cycleclock at about the time of the syscall.
// This call represents the time base that this module synchronizes to.
// Ensures that *cycleclock does not step back by up to (1 << 16) from
// last_cycleclock, to discard small backward counter steps. (Larger steps are
// assumed to be complete resyncs, which shouldn't happen. If they do, a full
// reinitialization of the outer algorithm should occur.)
static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
uint64_t *cycleclock)
ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
uint64_t local_approx_syscall_time_in_cycles = // local copy
time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
int64_t current_time_nanos_from_system;
uint64_t before_cycles;
uint64_t after_cycles;
uint64_t elapsed_cycles;
int loops = 0;
do {
before_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
after_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
// elapsed_cycles is unsigned, so is large on overflow
elapsed_cycles = after_cycles - before_cycles;
if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
++loops == 20) { // clock changed frequencies? Back off.
loops = 0;
if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
local_approx_syscall_time_in_cycles =
(local_approx_syscall_time_in_cycles + 1) << 1;
}
time_state.approx_syscall_time_in_cycles.store(
local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
}
} while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
// Adjust approx_syscall_time_in_cycles to be within a factor of 2
// of the typical time to execute one iteration of the loop above.
if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
// measured time is no smaller than half current approximation
time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
} else if (time_state.kernel_time_seen_smaller.fetch_add(
1, std::memory_order_relaxed) >= 3) {
// smaller delays several times in a row; reduce approximation by 12.5%
const uint64_t new_approximation =
local_approx_syscall_time_in_cycles -
(local_approx_syscall_time_in_cycles >> 3);
time_state.approx_syscall_time_in_cycles.store(new_approximation,
std::memory_order_relaxed);
time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
}
*cycleclock = after_cycles;
return current_time_nanos_from_system;
}
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
// Read the contents of *atomic into *sample.
// Each field is read atomically, but to maintain atomicity between fields,
// the access must be done under a lock.
static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
struct TimeSample *sample) {
sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
sample->nsscaled_per_cycle =
atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
sample->min_cycles_per_sample =
atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
}
// Public routine.
// Algorithm: We wish to compute real time from a cycle counter. In normal
// operation, we construct a piecewise linear approximation to the kernel time
// source, using the cycle counter value. The start of each line segment is at
// the same point as the end of the last, but may have a different slope (that
// is, a different idea of the cycle counter frequency). Every couple of
// seconds, the kernel time source is sampled and compared with the current
// approximation. A new slope is chosen that, if followed for another couple
// of seconds, will correct the error at the current position. The information
// for a sample is in the "last_sample" struct. The linear approximation is
// estimated_time = last_sample.base_ns +
// last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
// (ns_per_cycle is actually stored in different units and scaled, to avoid
// overflow). The base_ns of the next linear approximation is the
// estimated_time using the last approximation; the base_cycles is the cycle
// counter value at that time; the ns_per_cycle is the number of ns per cycle
// measured since the last sample, but adjusted so that most of the difference
// between the estimated_time and the kernel time will be corrected by the
// estimated time to the next sample. In normal operation, this algorithm
// relies on:
// - the cycle counter and kernel time rates not changing a lot in a few
// seconds.
// - the client calling into the code often compared to a couple of seconds, so
// the time to the next correction can be estimated.
// Any time ns_per_cycle is not known, a major error is detected, or the
// assumption about frequent calls is violated, the implementation returns the
// kernel time. It records sufficient data that a linear approximation can
// resume a little later.
int64_t GetCurrentTimeNanos() {
// read the data from the "last_sample" struct (but don't need raw_ns yet)
// The reads of "seq" and test of the values emulate a reader lock.
uint64_t base_ns;
uint64_t base_cycles;
uint64_t nsscaled_per_cycle;
uint64_t min_cycles_per_sample;
uint64_t seq_read0;
uint64_t seq_read1;
// If we have enough information to interpolate, the value returned will be
// derived from this cycleclock-derived time estimate. On some platforms
// (POWER) the function to retrieve this value has enough complexity to
// contribute to register pressure - reading it early before initializing
// the other pieces of the calculation minimizes spill/restore instructions,
// minimizing icache cost.
uint64_t now_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
// Acquire pairs with the barrier in SeqRelease - if this load sees that
// store, the shared-data reads necessarily see that SeqRelease's updates
// to the same shared data.
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
seq_read0 = time_state.seq.load(std::memory_order_acquire);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
base_cycles =
time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
nsscaled_per_cycle =
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
std::memory_order_relaxed);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// This acquire fence pairs with the release fence in SeqAcquire. Since it
// is sequenced between reads of shared data and seq_read1, the reads of
// shared data are effectively acquiring.
std::atomic_thread_fence(std::memory_order_acquire);
// The shared-data reads are effectively acquire ordered, and the
// shared-data writes are effectively release ordered. Therefore if our
// shared-data reads see any of a particular update's shared-data writes,
// seq_read1 is guaranteed to see that update's SeqAcquire.
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
seq_read1 = time_state.seq.load(std::memory_order_relaxed);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Fast path. Return if min_cycles_per_sample has not yet elapsed since the
// last sample, and we read a consistent sample. The fast path activates
// only when min_cycles_per_sample is non-zero, which happens when we get an
// estimate for the cycle time. The predicate will fail if now_cycles <
// base_cycles, or if some other thread is in the slow path.
//
// Since we now read now_cycles before base_ns, it is possible for now_cycles
// to be less than base_cycles (if we were interrupted between those loads and
// last_sample was updated). This is harmless, because delta_cycles will wrap
// and report a time much much bigger than min_cycles_per_sample. In that case
// we will take the slow path.
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
uint64_t delta_cycles;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
(delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
return base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale);
}
return GetCurrentTimeNanosSlowPath();
}
// Return (a << kScale)/b.
// Zero is returned if b==0. Scaling is performed internally to
// preserve precision without overflow.
static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
// Find maximum safe_shift so that
// 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow.
int safe_shift = kScale;
while (((a << safe_shift) >> safe_shift) != a) {
safe_shift--;
}
uint64_t scaled_b = b >> (kScale - safe_shift);
uint64_t quotient = 0;
if (scaled_b != 0) {
quotient = (a << safe_shift) / scaled_b;
}
return quotient;
}
static uint64_t UpdateLastSample(
uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
// The slow path of GetCurrentTimeNanos(). This is taken while gathering
// initial samples, when enough time has elapsed since the last sample, and if
// any other thread is writing to last_sample.
//
// Manually mark this 'noinline' to minimize stack frame size of the fast
// path. Without this, sometimes a compiler may inline this big block of code
// into the fast path. That causes lots of register spills and reloads that
// are unnecessary unless the slow path is taken.
//
// TODO(absl-team): Remove this attribute when our compiler is smart enough
// to do the right thing.
ABSL_ATTRIBUTE_NOINLINE
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
static int64_t GetCurrentTimeNanosSlowPath()
ABSL_LOCKS_EXCLUDED(time_state.lock) {
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Serialize access to slow-path. Fast-path readers are not blocked yet, and
// code below must not modify last_sample until the seqlock is acquired.
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.lock.Lock();
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Sample the kernel time base. This is the definition of
// "now" if we take the slow path.
uint64_t now_cycles;
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
uint64_t now_ns =
GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles);
time_state.last_now_cycles = now_cycles;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
uint64_t estimated_base_ns;
// ----------
// Read the "last_sample" values again; this time holding the write lock.
struct TimeSample sample;
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
ReadTimeSampleAtomic(&time_state.last_sample, &sample);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// ----------
// Try running the fast path again; another thread may have updated the
// sample between our run of the fast path and the sample we just read.
uint64_t delta_cycles = now_cycles - sample.base_cycles;
if (delta_cycles < sample.min_cycles_per_sample) {
// Another thread updated the sample. This path does not take the seqlock
// so that blocked readers can make progress without blocking new readers.
estimated_base_ns = sample.base_ns +
((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.stats_fast_slow_paths++;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
} else {
estimated_base_ns =
UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
}
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.lock.Unlock();
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
return estimated_base_ns;
}
// Main part of the algorithm. Locks out readers, updates the approximation
// using the new sample from the kernel, and stores the result in last_sample
// for readers. Returns the new estimated time.
static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
uint64_t delta_cycles,
const struct TimeSample *sample)
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
uint64_t estimated_base_ns = now_ns;
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
uint64_t lock_value =
SeqAcquire(&time_state.seq); // acquire seqlock to block readers
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// The 5s in the next if-statement limits the time for which we will trust
// the cycle counter and our last sample to give a reasonable result.
// Errors in the rate of the source clock can be multiplied by the ratio
// between this limit and kMinNSBetweenSamples.
if (sample->raw_ns == 0 || // no recent sample, or clock went backwards
sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
// record this sample, and forget any previously known slope.
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
time_state.last_sample.base_ns.store(estimated_base_ns,
std::memory_order_relaxed);
time_state.last_sample.base_cycles.store(now_cycles,
std::memory_order_relaxed);
time_state.last_sample.nsscaled_per_cycle.store(0,
std::memory_order_relaxed);
time_state.last_sample.min_cycles_per_sample.store(
0, std::memory_order_relaxed);
time_state.stats_initializations++;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
} else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
sample->base_cycles + 50 < now_cycles) {
// Enough time has passed to compute the cycle time.
if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate.
// Compute time from counter reading, but avoiding overflow
// delta_cycles may be larger than on the fast path.
uint64_t estimated_scaled_ns;
int s = -1;
do {
s++;
estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
} while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
(delta_cycles >> s));
estimated_base_ns = sample->base_ns +
(estimated_scaled_ns >> (kScale - s));
}
// Compute the assumed cycle time kMinNSBetweenSamples ns into the future
// assuming the cycle counter rate stays the same as the last interval.
uint64_t ns = now_ns - sample->raw_ns;
uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
uint64_t assumed_next_sample_delta_cycles =
SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
int64_t diff_ns = now_ns - estimated_base_ns; // estimate low by this much
// We want to set nsscaled_per_cycle so that our estimate of the ns time
// at the assumed cycle time is the assumed ns time.
// That is, we want to set nsscaled_per_cycle so:
// kMinNSBetweenSamples + diff_ns ==
// (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
// But we wish to damp oscillations, so instead correct only most
// of our current error, by solving:
// kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
// (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
ns = kMinNSBetweenSamples + diff_ns - (diff_ns / 16);
uint64_t new_nsscaled_per_cycle =
SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
if (new_nsscaled_per_cycle != 0 &&
diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
// record the cycle time measurement
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.last_sample.nsscaled_per_cycle.store(
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
new_nsscaled_per_cycle, std::memory_order_relaxed);
uint64_t new_min_cycles_per_sample =
SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.last_sample.min_cycles_per_sample.store(
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
new_min_cycles_per_sample, std::memory_order_relaxed);
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.stats_calibrations++;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
} else { // something went wrong; forget the slope
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.last_sample.nsscaled_per_cycle.store(
0, std::memory_order_relaxed);
time_state.last_sample.min_cycles_per_sample.store(
0, std::memory_order_relaxed);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
estimated_base_ns = now_ns;
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.stats_reinitializations++;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
}
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
time_state.last_sample.base_ns.store(estimated_base_ns,
std::memory_order_relaxed);
time_state.last_sample.base_cycles.store(now_cycles,
std::memory_order_relaxed);
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
} else {
// have a sample, but no slope; waiting for enough time for a calibration
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
time_state.stats_slow_paths++;
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
}
Export of internal Abseil changes -- a0491c8d790972cd80e2d720fe1fdf5f711a6f1a by Greg Falcon <gfalcon@google.com>: Stop directly accessing CordRepFlat data via CordRep::data. The old pattern of access breaks the `CordRep` type abstraction; since `CordRep::data` is not in general guaranteed to contain the chunk's data, we shouldn't access it that way. This incidentally adds an assertion check (via the flat() accessor) that the CordRep is indeed flat on each such access, but a manual inspection of the code, as well as the fact that this code currently works, suggest that this is always true.) PiperOrigin-RevId: 351592344 -- f40c3b43ca5b1d7e23cd45f1ffac1783105ac1a3 by Abseil Team <absl-team@google.com>: Revert 18abb2902b9f06c63a968b24d3dda785ebf99a22 PiperOrigin-RevId: 351523518 -- 18abb2902b9f06c63a968b24d3dda785ebf99a22 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 351512412 -- 9b881602d45e95e06089792c7627cd56528a255a by Abseil Team <absl-team@google.com>: Keep time's global state in a cacheline-aligned structure. Keeping the global state as separate global variables results in two issues: 1) False sharing with adjacent global data (e.g., cycle clock source), since the global fields are updated every O(10usec). 2) The hot global fields (e.g., seq and samples) can reside on different cache lines. To fix this, simply wrap the global data in a ABSL_CACHE_ALIGNED structure. This is similar to what we do for MutexGlobals. PiperOrigin-RevId: 351389466 GitOrigin-RevId: a0491c8d790972cd80e2d720fe1fdf5f711a6f1a Change-Id: Ie0fa80112043381cd37c84e2ab2b7334839f54b5
4 years ago
SeqRelease(&time_state.seq, lock_value); // release the readers
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
return estimated_base_ns;
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
// Returns the maximum duration that SleepOnce() can sleep for.
constexpr absl::Duration MaxSleep() {
#ifdef _WIN32
// Windows Sleep() takes unsigned long argument in milliseconds.
return absl::Milliseconds(
std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int)
#else
return absl::Seconds(std::numeric_limits<time_t>::max());
#endif
}
// Sleeps for the given duration.
// REQUIRES: to_sleep <= MaxSleep().
void SleepOnce(absl::Duration to_sleep) {
#ifdef _WIN32
Sleep(to_sleep / absl::Milliseconds(1));
#else
struct timespec sleep_time = absl::ToTimespec(to_sleep);
while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
// Ignore signals and wait for the full interval to elapse.
}
#endif
}
} // namespace
ABSL_NAMESPACE_END
} // namespace absl
extern "C" {
ABSL_ATTRIBUTE_WEAK void AbslInternalSleepFor(absl::Duration duration) {
while (duration > absl::ZeroDuration()) {
absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
absl::SleepOnce(to_sleep);
duration -= to_sleep;
}
}
} // extern "C"