Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

781 lines
34 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/charconv.h"
#include <cstdlib>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/internal/pow10_helper.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#ifdef _MSC_FULL_VER
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
#else
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
#endif
namespace {
using absl::strings_internal::Pow10;
#if ABSL_COMPILER_DOES_EXACT_ROUNDING
// Tests that the given string is accepted by absl::from_chars, and that it
// converts exactly equal to the given number.
void TestDoubleParse(absl::string_view str, double expected_number) {
SCOPED_TRACE(str);
double actual_number = 0.0;
absl::from_chars_result result =
absl::from_chars(str.data(), str.data() + str.length(), actual_number);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr, str.data() + str.length());
EXPECT_EQ(actual_number, expected_number);
}
void TestFloatParse(absl::string_view str, float expected_number) {
SCOPED_TRACE(str);
float actual_number = 0.0;
absl::from_chars_result result =
absl::from_chars(str.data(), str.data() + str.length(), actual_number);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr, str.data() + str.length());
EXPECT_EQ(actual_number, expected_number);
}
// Tests that the given double or single precision floating point literal is
// parsed correctly by absl::from_chars.
//
// These convenience macros assume that the C++ compiler being used also does
// fully correct decimal-to-binary conversions.
#define FROM_CHARS_TEST_DOUBLE(number) \
{ \
TestDoubleParse(#number, number); \
TestDoubleParse("-" #number, -number); \
}
#define FROM_CHARS_TEST_FLOAT(number) \
{ \
TestFloatParse(#number, number##f); \
TestFloatParse("-" #number, -number##f); \
}
TEST(FromChars, NearRoundingCases) {
// Cases from "A Program for Testing IEEE Decimal-Binary Conversion"
// by Vern Paxson.
// Forms that should round towards zero. (These are the hardest cases for
// each decimal mantissa size.)
FROM_CHARS_TEST_DOUBLE(5.e125);
FROM_CHARS_TEST_DOUBLE(69.e267);
FROM_CHARS_TEST_DOUBLE(999.e-026);
FROM_CHARS_TEST_DOUBLE(7861.e-034);
FROM_CHARS_TEST_DOUBLE(75569.e-254);
FROM_CHARS_TEST_DOUBLE(928609.e-261);
FROM_CHARS_TEST_DOUBLE(9210917.e080);
FROM_CHARS_TEST_DOUBLE(84863171.e114);
FROM_CHARS_TEST_DOUBLE(653777767.e273);
FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
FROM_CHARS_TEST_FLOAT(5.e-20);
FROM_CHARS_TEST_FLOAT(67.e14);
FROM_CHARS_TEST_FLOAT(985.e15);
FROM_CHARS_TEST_FLOAT(7693.e-42);
FROM_CHARS_TEST_FLOAT(55895.e-16);
FROM_CHARS_TEST_FLOAT(996622.e-44);
FROM_CHARS_TEST_FLOAT(7038531.e-32);
FROM_CHARS_TEST_FLOAT(60419369.e-46);
FROM_CHARS_TEST_FLOAT(702990899.e-20);
FROM_CHARS_TEST_FLOAT(6930161142.e-48);
FROM_CHARS_TEST_FLOAT(25933168707.e-13);
FROM_CHARS_TEST_FLOAT(596428896559.e20);
// Similarly, forms that should round away from zero.
FROM_CHARS_TEST_DOUBLE(9.e-265);
FROM_CHARS_TEST_DOUBLE(85.e-037);
FROM_CHARS_TEST_DOUBLE(623.e100);
FROM_CHARS_TEST_DOUBLE(3571.e263);
FROM_CHARS_TEST_DOUBLE(81661.e153);
FROM_CHARS_TEST_DOUBLE(920657.e-023);
FROM_CHARS_TEST_DOUBLE(4603285.e-024);
FROM_CHARS_TEST_DOUBLE(87575437.e-309);
FROM_CHARS_TEST_DOUBLE(245540327.e122);
FROM_CHARS_TEST_DOUBLE(6138508175.e120);
FROM_CHARS_TEST_DOUBLE(83356057653.e193);
FROM_CHARS_TEST_DOUBLE(619534293513.e124);
FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
FROM_CHARS_TEST_FLOAT(3.e-23);
FROM_CHARS_TEST_FLOAT(57.e18);
FROM_CHARS_TEST_FLOAT(789.e-35);
FROM_CHARS_TEST_FLOAT(2539.e-18);
FROM_CHARS_TEST_FLOAT(76173.e28);
FROM_CHARS_TEST_FLOAT(887745.e-11);
FROM_CHARS_TEST_FLOAT(5382571.e-37);
FROM_CHARS_TEST_FLOAT(82381273.e-35);
FROM_CHARS_TEST_FLOAT(750486563.e-38);
FROM_CHARS_TEST_FLOAT(3752432815.e-39);
FROM_CHARS_TEST_FLOAT(75224575729.e-45);
FROM_CHARS_TEST_FLOAT(459926601011.e15);
}
#undef FROM_CHARS_TEST_DOUBLE
#undef FROM_CHARS_TEST_FLOAT
#endif
float ToFloat(absl::string_view s) {
float f;
absl::from_chars(s.data(), s.data() + s.size(), f);
return f;
}
double ToDouble(absl::string_view s) {
double d;
absl::from_chars(s.data(), s.data() + s.size(), d);
return d;
}
// A duplication of the test cases in "NearRoundingCases" above, but with
// expected values expressed with integers, using ldexp/ldexpf. These test
// cases will work even on compilers that do not accurately round floating point
// literals.
TEST(FromChars, NearRoundingCasesExplicit) {
EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
ldexp(4524032052079546, -722));
EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
ldexp(5070963299887562, -760));
EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
ldexp(6452687840519111, 757));
EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));
EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
ldexp(5635662608542340, -825));
EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
ldexp(5644774693823803, -157));
EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
ldexp(4616868614322430, 233));
EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
}
// Common test logic for converting a string which lies exactly halfway between
// two target floats.
//
// mantissa and exponent represent the precise value between two floating point
// numbers, `expected_low` and `expected_high`. The floating point
// representation to parse in `StrCat(mantissa, "e", exponent)`.
//
// This function checks that an input just slightly less than the exact value
// is rounded down to `expected_low`, and an input just slightly greater than
// the exact value is rounded up to `expected_high`.
//
// The exact value should round to `expected_half`, which must be either
// `expected_low` or `expected_high`.
template <typename FloatType>
void TestHalfwayValue(const std::string& mantissa, int exponent,
FloatType expected_low, FloatType expected_high,
FloatType expected_half) {
std::string low_rep = mantissa;
low_rep[low_rep.size() - 1] -= 1;
absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);
FloatType actual_low = 0;
absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
EXPECT_EQ(expected_low, actual_low);
std::string high_rep =
absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
FloatType actual_high = 0;
absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
actual_high);
EXPECT_EQ(expected_high, actual_high);
std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
FloatType actual_half = 0;
absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
actual_half);
EXPECT_EQ(expected_half, actual_half);
}
TEST(FromChars, DoubleRounding) {
const double zero = 0.0;
const double first_subnormal = nextafter(zero, 1.0);
const double second_subnormal = nextafter(first_subnormal, 1.0);
const double first_normal = DBL_MIN;
const double last_subnormal = nextafter(first_normal, 0.0);
const double second_normal = nextafter(first_normal, 1.0);
const double last_normal = DBL_MAX;
const double penultimate_normal = nextafter(last_normal, 0.0);
// Various test cases for numbers between two representable floats. Each
// call to TestHalfwayValue tests a number just below and just above the
// halfway point, as well as the number exactly between them.
// Test between zero and first_subnormal. Round-to-even tie rounds down.
TestHalfwayValue(
"2."
"470328229206232720882843964341106861825299013071623822127928412503377536"
"351043759326499181808179961898982823477228588654633283551779698981993873"
"980053909390631503565951557022639229085839244910518443593180284993653615"
"250031937045767824921936562366986365848075700158576926990370631192827955"
"855133292783433840935197801553124659726357957462276646527282722005637400"
"648549997709659947045402082816622623785739345073633900796776193057750674"
"017632467360096895134053553745851666113422376667860416215968046191446729"
"184030053005753084904876539171138659164623952491262365388187963623937328"
"042389101867234849766823508986338858792562830275599565752445550725518931"
"369083625477918694866799496832404970582102851318545139621383772282614543"
"7693412532098591327667236328125",
-324, zero, first_subnormal, zero);
// first_subnormal and second_subnormal. Round-to-even tie rounds up.
TestHalfwayValue(
"7."
"410984687618698162648531893023320585475897039214871466383785237510132609"
"053131277979497545424539885696948470431685765963899850655339096945981621"
"940161728171894510697854671067917687257517734731555330779540854980960845"
"750095811137303474765809687100959097544227100475730780971111893578483867"
"565399878350301522805593404659373979179073872386829939581848166016912201"
"945649993128979841136206248449867871357218035220901702390328579173252022"
"052897402080290685402160661237554998340267130003581248647904138574340187"
"552090159017259254714629617513415977493871857473787096164563890871811984"
"127167305601704549300470526959016576377688490826798697257336652176556794"
"107250876433756084600398490497214911746308553955635418864151316847843631"
"3080237596295773983001708984375",
-324, first_subnormal, second_subnormal, second_subnormal);
// last_subnormal and first_normal. Round-to-even tie rounds up.
TestHalfwayValue(
"2."
"225073858507201136057409796709131975934819546351645648023426109724822222"
"021076945516529523908135087914149158913039621106870086438694594645527657"
"207407820621743379988141063267329253552286881372149012981122451451889849"
"057222307285255133155755015914397476397983411801999323962548289017107081"
"850690630666655994938275772572015763062690663332647565300009245888316433"
"037779791869612049497390377829704905051080609940730262937128958950003583"
"799967207254304360284078895771796150945516748243471030702609144621572289"
"880258182545180325707018860872113128079512233426288368622321503775666622"
"503982534335974568884423900265498198385487948292206894721689831099698365"
"846814022854243330660339850886445804001034933970427567186443383770486037"
"86162277173854562306587467901408672332763671875",
-308, last_subnormal, first_normal, first_normal);
// first_normal and second_normal. Round-to-even tie rounds down.
TestHalfwayValue(
"2."
"225073858507201630123055637955676152503612414573018013083228724049586647"
"606759446192036794116886953213985520549032000903434781884412325572184367"
"563347617020518175998922941393629966742598285899994830148971433555578567"
"693279306015978183162142425067962460785295885199272493577688320732492479"
"924816869232247165964934329258783950102250973957579510571600738343645738"
"494324192997092179207389919761694314131497173265255020084997973676783743"
"155205818804439163810572367791175177756227497413804253387084478193655533"
"073867420834526162513029462022730109054820067654020201547112002028139700"
"141575259123440177362244273712468151750189745559978653234255886219611516"
"335924167958029604477064946470184777360934300451421683607013647479513962"
"13837722826145437693412532098591327667236328125",
-308, first_normal, second_normal, first_normal);
// penultimate_normal and last_normal. Round-to-even rounds down.
TestHalfwayValue(
"1."
"797693134862315608353258760581052985162070023416521662616611746258695532"
"672923265745300992879465492467506314903358770175220871059269879629062776"
"047355692132901909191523941804762171253349609463563872612866401980290377"
"995141836029815117562837277714038305214839639239356331336428021390916694"
"57927874464075218944",
308, penultimate_normal, last_normal, penultimate_normal);
}
// Same test cases as DoubleRounding, now with new and improved Much Smaller
// Precision!
TEST(FromChars, FloatRounding) {
const float zero = 0.0;
const float first_subnormal = nextafterf(zero, 1.0);
const float second_subnormal = nextafterf(first_subnormal, 1.0);
const float first_normal = FLT_MIN;
const float last_subnormal = nextafterf(first_normal, 0.0);
const float second_normal = nextafterf(first_normal, 1.0);
const float last_normal = FLT_MAX;
const float penultimate_normal = nextafterf(last_normal, 0.0);
// Test between zero and first_subnormal. Round-to-even tie rounds down.
TestHalfwayValue(
"7."
"006492321624085354618647916449580656401309709382578858785341419448955413"
"42930300743319094181060791015625",
-46, zero, first_subnormal, zero);
// first_subnormal and second_subnormal. Round-to-even tie rounds up.
TestHalfwayValue(
"2."
"101947696487225606385594374934874196920392912814773657635602425834686624"
"028790902229957282543182373046875",
-45, first_subnormal, second_subnormal, second_subnormal);
// last_subnormal and first_normal. Round-to-even tie rounds up.
TestHalfwayValue(
"1."
"175494280757364291727882991035766513322858992758990427682963118425003064"
"9651730385585324256680905818939208984375",
-38, last_subnormal, first_normal, first_normal);
// first_normal and second_normal. Round-to-even tie rounds down.
TestHalfwayValue(
"1."
"175494420887210724209590083408724842314472120785184615334540294131831453"
"9442813071445925743319094181060791015625",
-38, first_normal, second_normal, first_normal);
// penultimate_normal and last_normal. Round-to-even rounds down.
TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
penultimate_normal, last_normal, penultimate_normal);
}
TEST(FromChars, Underflow) {
// Check that underflow is handled correctly, according to the specification
// in DR 3081.
double d;
float f;
absl::from_chars_result result;
std::string negative_underflow = "-1e-1000";
const char* begin = negative_underflow.data();
const char* end = begin + negative_underflow.size();
d = 100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(d)); // negative
EXPECT_GE(d, -std::numeric_limits<double>::min());
f = 100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(f)); // negative
EXPECT_GE(f, -std::numeric_limits<float>::min());
std::string positive_underflow = "1e-1000";
begin = positive_underflow.data();
end = begin + positive_underflow.size();
d = -100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(d)); // positive
EXPECT_LE(d, std::numeric_limits<double>::min());
f = -100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(f)); // positive
EXPECT_LE(f, std::numeric_limits<float>::min());
}
TEST(FromChars, Overflow) {
// Check that overflow is handled correctly, according to the specification
// in DR 3081.
double d;
float f;
absl::from_chars_result result;
std::string negative_overflow = "-1e1000";
const char* begin = negative_overflow.data();
const char* end = begin + negative_overflow.size();
d = 100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(d)); // negative
EXPECT_EQ(d, -std::numeric_limits<double>::max());
f = 100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(f)); // negative
EXPECT_EQ(f, -std::numeric_limits<float>::max());
std::string positive_overflow = "1e1000";
begin = positive_overflow.data();
end = begin + positive_overflow.size();
d = -100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(d)); // positive
EXPECT_EQ(d, std::numeric_limits<double>::max());
f = -100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(f)); // positive
EXPECT_EQ(f, std::numeric_limits<float>::max());
}
TEST(FromChars, RegressionTestsFromFuzzer) {
absl::string_view src = "0x21900000p00000000099";
float f;
auto result = absl::from_chars(src.data(), src.data() + src.size(), f);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
}
TEST(FromChars, ReturnValuePtr) {
// Check that `ptr` points one past the number scanned, even if that number
// is not representable.
double d;
absl::from_chars_result result;
std::string normal = "3.14@#$%@#$%";
result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr - normal.data(), 4);
std::string overflow = "1e1000@#$%@#$%";
result = absl::from_chars(overflow.data(),
overflow.data() + overflow.size(), d);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_EQ(result.ptr - overflow.data(), 6);
std::string garbage = "#$%@#$%";
result = absl::from_chars(garbage.data(),
garbage.data() + garbage.size(), d);
EXPECT_EQ(result.ec, std::errc::invalid_argument);
EXPECT_EQ(result.ptr - garbage.data(), 0);
}
// Check for a wide range of inputs that strtod() and absl::from_chars() exactly
// agree on the conversion amount.
//
// This test assumes the platform's strtod() uses perfect round_to_nearest
// rounding.
TEST(FromChars, TestVersusStrtod) {
for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
for (int exponent = -300; exponent < 300; ++exponent) {
std::string candidate = absl::StrCat(mantissa, "e", exponent);
double strtod_value = strtod(candidate.c_str(), nullptr);
double absl_value = 0;
absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
absl_value);
ASSERT_EQ(strtod_value, absl_value) << candidate;
}
}
}
// Check for a wide range of inputs that strtof() and absl::from_chars() exactly
// agree on the conversion amount.
//
// This test assumes the platform's strtof() uses perfect round_to_nearest
// rounding.
TEST(FromChars, TestVersusStrtof) {
for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
for (int exponent = -43; exponent < 32; ++exponent) {
std::string candidate = absl::StrCat(mantissa, "e", exponent);
float strtod_value = strtof(candidate.c_str(), nullptr);
float absl_value = 0;
absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
absl_value);
ASSERT_EQ(strtod_value, absl_value) << candidate;
}
}
}
// Tests if two floating point values have identical bit layouts. (EXPECT_EQ
// is not suitable for NaN testing, since NaNs are never equal.)
template <typename Float>
bool Identical(Float a, Float b) {
return 0 == memcmp(&a, &b, sizeof(Float));
}
// Check that NaNs are parsed correctly. The spec requires that
// std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc").
// How such an n-char-sequence affects the generated NaN is unspecified, so we
// just test for symmetry with std::nan and strtod here.
//
// (In Linux, this parses the value as a number and stuffs that number into the
// free bits of a quiet NaN.)
TEST(FromChars, NaNDoubles) {
for (std::string n_char_sequence :
{"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
"8000000000000", "abc123", "legal_but_unexpected",
"99999999999999999999999", "_"}) {
std::string input = absl::StrCat("nan(", n_char_sequence, ")");
SCOPED_TRACE(input);
double from_chars_double;
absl::from_chars(input.data(), input.data() + input.size(),
from_chars_double);
double std_nan_double = std::nan(n_char_sequence.c_str());
EXPECT_TRUE(Identical(from_chars_double, std_nan_double));
// Also check that we match strtod()'s behavior. This test assumes that the
// platform has a compliant strtod().
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
double strtod_double = strtod(input.c_str(), nullptr);
EXPECT_TRUE(Identical(from_chars_double, strtod_double));
#endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
// Check that we can parse a negative NaN
std::string negative_input = "-" + input;
double negative_from_chars_double;
absl::from_chars(negative_input.data(),
negative_input.data() + negative_input.size(),
negative_from_chars_double);
EXPECT_TRUE(std::signbit(negative_from_chars_double));
EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
from_chars_double = std::copysign(from_chars_double, -1.0);
EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
}
}
TEST(FromChars, NaNFloats) {
for (std::string n_char_sequence :
{"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
"8000000000000", "abc123", "legal_but_unexpected",
"99999999999999999999999", "_"}) {
std::string input = absl::StrCat("nan(", n_char_sequence, ")");
SCOPED_TRACE(input);
float from_chars_float;
absl::from_chars(input.data(), input.data() + input.size(),
from_chars_float);
float std_nan_float = std::nanf(n_char_sequence.c_str());
EXPECT_TRUE(Identical(from_chars_float, std_nan_float));
// Also check that we match strtof()'s behavior. This test assumes that the
// platform has a compliant strtof().
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
float strtof_float = strtof(input.c_str(), nullptr);
EXPECT_TRUE(Identical(from_chars_float, strtof_float));
#endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
// Check that we can parse a negative NaN
std::string negative_input = "-" + input;
float negative_from_chars_float;
absl::from_chars(negative_input.data(),
negative_input.data() + negative_input.size(),
negative_from_chars_float);
EXPECT_TRUE(std::signbit(negative_from_chars_float));
EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
from_chars_float = std::copysign(from_chars_float, -1.0);
EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
}
}
// Returns an integer larger than step. The values grow exponentially.
int NextStep(int step) {
return step + (step >> 2) + 1;
}
// Test a conversion on a family of input strings, checking that the calculation
// is correct for in-bounds values, and that overflow and underflow are done
// correctly for out-of-bounds values.
//
// input_generator maps from an integer index to a string to test.
// expected_generator maps from an integer index to an expected Float value.
// from_chars conversion of input_generator(i) should result in
// expected_generator(i).
//
// lower_bound and upper_bound denote the smallest and largest values for which
// the conversion is expected to succeed.
template <typename Float>
void TestOverflowAndUnderflow(
const std::function<std::string(int)>& input_generator,
const std::function<Float(int)>& expected_generator, int lower_bound,
int upper_bound) {
// test legal values near lower_bound
int index, step;
for (index = lower_bound, step = 1; index < upper_bound;
index += step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float expected = expected_generator(index);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(expected, actual)
<< absl::StrFormat("%a vs %a", expected, actual);
}
// test legal values near upper_bound
for (index = upper_bound, step = 1; index > lower_bound;
index -= step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float expected = expected_generator(index);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(expected, actual)
<< absl::StrFormat("%a vs %a", expected, actual);
}
// Test underflow values below lower_bound
for (index = lower_bound - 1, step = 1; index > -1000000;
index -= step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_LT(actual, 1.0); // check for underflow
}
// Test overflow values above upper_bound
for (index = upper_bound + 1, step = 1; index < 1000000;
index += step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_GT(actual, 1.0); // check for overflow
}
}
// Check that overflow and underflow are caught correctly for hex doubles.
//
// The largest representable double is 0x1.fffffffffffffp+1023, and the
// smallest representable subnormal is 0x0.0000000000001p-1022, which equals
// 0x1p-1074. Therefore 1023 and -1074 are the limits of acceptable exponents
// in this test.
TEST(FromChars, HexdecimalDoubleLimits) {
auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023);
}
// Check that overflow and underflow are caught correctly for hex floats.
//
// The largest representable float is 0x1.fffffep+127, and the smallest
// representable subnormal is 0x0.000002p-126, which equals 0x1p-149.
// Therefore 127 and -149 are the limits of acceptable exponents in this test.
TEST(FromChars, HexdecimalFloatLimits) {
auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
auto expected_gen = [](int index) { return std::ldexp(1.0f, index); };
TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127);
}
// Check that overflow and underflow are caught correctly for decimal doubles.
//
// The largest representable double is about 1.8e308, and the smallest
// representable subnormal is about 5e-324. '1e-324' therefore rounds away from
// the smallest representable positive value. -323 and 308 are the limits of
// acceptable exponents in this test.
TEST(FromChars, DecimalDoubleLimits) {
auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
auto expected_gen = [](int index) { return Pow10(index); };
TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308);
}
// Check that overflow and underflow are caught correctly for decimal floats.
//
// The largest representable float is about 3.4e38, and the smallest
// representable subnormal is about 1.45e-45. '1e-45' therefore rounds towards
// the smallest representable positive value. -45 and 38 are the limits of
// acceptable exponents in this test.
TEST(FromChars, DecimalFloatLimits) {
auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
auto expected_gen = [](int index) { return Pow10(index); };
TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38);
}
} // namespace