Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
415 lines
14 KiB
415 lines
14 KiB
6 years ago
|
// Copyright 2017 The Abseil Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_
|
||
|
#define ABSL_RANDOM_BETA_DISTRIBUTION_H_
|
||
|
|
||
|
#include <cassert>
|
||
|
#include <cmath>
|
||
|
#include <istream>
|
||
|
#include <limits>
|
||
|
#include <ostream>
|
||
|
#include <type_traits>
|
||
|
|
||
|
#include "absl/random/internal/distribution_impl.h"
|
||
|
#include "absl/random/internal/fast_uniform_bits.h"
|
||
|
#include "absl/random/internal/fastmath.h"
|
||
|
#include "absl/random/internal/iostream_state_saver.h"
|
||
|
|
||
|
namespace absl {
|
||
|
|
||
|
// absl::beta_distribution:
|
||
|
// Generate a floating-point variate conforming to a Beta distribution:
|
||
|
// pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
|
||
|
// where the params alpha and beta are both strictly positive real values.
|
||
|
//
|
||
|
// The support is the open interval (0, 1), but the return value might be equal
|
||
|
// to 0 or 1, due to numerical errors when alpha and beta are very different.
|
||
|
//
|
||
|
// Usage note: One usage is that alpha and beta are counts of number of
|
||
|
// successes and failures. When the total number of trials are large, consider
|
||
|
// approximating a beta distribution with a Gaussian distribution with the same
|
||
|
// mean and variance. One could use the skewness, which depends only on the
|
||
|
// smaller of alpha and beta when the number of trials are sufficiently large,
|
||
|
// to quantify how far a beta distribution is from the normal distribution.
|
||
|
template <typename RealType = double>
|
||
|
class beta_distribution {
|
||
|
public:
|
||
|
using result_type = RealType;
|
||
|
|
||
|
class param_type {
|
||
|
public:
|
||
|
using distribution_type = beta_distribution;
|
||
|
|
||
|
explicit param_type(result_type alpha, result_type beta)
|
||
|
: alpha_(alpha), beta_(beta) {
|
||
|
assert(alpha >= 0);
|
||
|
assert(beta >= 0);
|
||
|
assert(alpha <= (std::numeric_limits<result_type>::max)());
|
||
|
assert(beta <= (std::numeric_limits<result_type>::max)());
|
||
|
if (alpha == 0 || beta == 0) {
|
||
|
method_ = DEGENERATE_SMALL;
|
||
|
x_ = (alpha >= beta) ? 1 : 0;
|
||
|
return;
|
||
|
}
|
||
|
// a_ = min(beta, alpha), b_ = max(beta, alpha).
|
||
|
if (beta < alpha) {
|
||
|
inverted_ = true;
|
||
|
a_ = beta;
|
||
|
b_ = alpha;
|
||
|
} else {
|
||
|
inverted_ = false;
|
||
|
a_ = alpha;
|
||
|
b_ = beta;
|
||
|
}
|
||
|
if (a_ <= 1 && b_ >= ThresholdForLargeA()) {
|
||
|
method_ = DEGENERATE_SMALL;
|
||
|
x_ = inverted_ ? result_type(1) : result_type(0);
|
||
|
return;
|
||
|
}
|
||
|
// For threshold values, see also:
|
||
|
// Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.
|
||
|
// February, 2009.
|
||
|
if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {
|
||
|
// Choose Joehnk over Cheng when it's faster or when Cheng encounters
|
||
|
// numerical issues.
|
||
|
method_ = JOEHNK;
|
||
|
a_ = result_type(1) / alpha_;
|
||
|
b_ = result_type(1) / beta_;
|
||
|
if (std::isinf(a_) || std::isinf(b_)) {
|
||
|
method_ = DEGENERATE_SMALL;
|
||
|
x_ = inverted_ ? result_type(1) : result_type(0);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
if (a_ >= ThresholdForLargeA()) {
|
||
|
method_ = DEGENERATE_LARGE;
|
||
|
// Note: on PPC for long double, evaluating
|
||
|
// `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.
|
||
|
result_type r = a_ / b_;
|
||
|
x_ = (inverted_ ? result_type(1) : r) / (1 + r);
|
||
|
return;
|
||
|
}
|
||
|
x_ = a_ + b_;
|
||
|
log_x_ = std::log(x_);
|
||
|
if (a_ <= 1) {
|
||
|
method_ = CHENG_BA;
|
||
|
y_ = result_type(1) / a_;
|
||
|
gamma_ = a_ + a_;
|
||
|
return;
|
||
|
}
|
||
|
method_ = CHENG_BB;
|
||
|
result_type r = (a_ - 1) / (b_ - 1);
|
||
|
y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));
|
||
|
gamma_ = a_ + result_type(1) / y_;
|
||
|
}
|
||
|
|
||
|
result_type alpha() const { return alpha_; }
|
||
|
result_type beta() const { return beta_; }
|
||
|
|
||
|
friend bool operator==(const param_type& a, const param_type& b) {
|
||
|
return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;
|
||
|
}
|
||
|
|
||
|
friend bool operator!=(const param_type& a, const param_type& b) {
|
||
|
return !(a == b);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
friend class beta_distribution;
|
||
|
|
||
|
#ifdef COMPILER_MSVC
|
||
|
// MSVC does not have constexpr implementations for std::log and std::exp
|
||
|
// so they are computed at runtime.
|
||
|
#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
|
||
|
#else
|
||
|
#define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr
|
||
|
#endif
|
||
|
|
||
|
// The threshold for whether std::exp(1/a) is finite.
|
||
|
// Note that this value is quite large, and a smaller a_ is NOT abnormal.
|
||
|
static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
|
||
|
ThresholdForSmallA() {
|
||
|
return result_type(1) /
|
||
|
std::log((std::numeric_limits<result_type>::max)());
|
||
|
}
|
||
|
|
||
|
// The threshold for whether a * std::log(a) is finite.
|
||
|
static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
|
||
|
ThresholdForLargeA() {
|
||
|
return std::exp(
|
||
|
std::log((std::numeric_limits<result_type>::max)()) -
|
||
|
std::log(std::log((std::numeric_limits<result_type>::max)())) -
|
||
|
ThresholdPadding());
|
||
|
}
|
||
|
|
||
|
#undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
|
||
|
|
||
|
// Pad the threshold for large A for long double on PPC. This is done via a
|
||
|
// template specialization below.
|
||
|
static constexpr result_type ThresholdPadding() { return 0; }
|
||
|
|
||
|
enum Method {
|
||
|
JOEHNK, // Uses algorithm Joehnk
|
||
|
CHENG_BA, // Uses algorithm BA in Cheng
|
||
|
CHENG_BB, // Uses algorithm BB in Cheng
|
||
|
|
||
|
// Note: See also:
|
||
|
// Hung et al. Evaluation of beta generation algorithms. Communications
|
||
|
// in Statistics-Simulation and Computation 38.4 (2009): 750-770.
|
||
|
// especially:
|
||
|
// Zechner, Heinz, and Ernst Stadlober. Generating beta variates via
|
||
|
// patchwork rejection. Computing 50.1 (1993): 1-18.
|
||
|
|
||
|
DEGENERATE_SMALL, // a_ is abnormally small.
|
||
|
DEGENERATE_LARGE, // a_ is abnormally large.
|
||
|
};
|
||
|
|
||
|
result_type alpha_;
|
||
|
result_type beta_;
|
||
|
|
||
|
result_type a_; // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK
|
||
|
result_type b_; // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK
|
||
|
result_type x_; // alpha + beta, or the result in degenerate cases
|
||
|
result_type log_x_; // log(x_)
|
||
|
result_type y_; // "beta" in Cheng
|
||
|
result_type gamma_; // "gamma" in Cheng
|
||
|
|
||
|
Method method_;
|
||
|
|
||
|
// Placing this last for optimal alignment.
|
||
|
// Whether alpha_ != a_, i.e. true iff alpha_ > beta_.
|
||
|
bool inverted_;
|
||
|
|
||
|
static_assert(std::is_floating_point<RealType>::value,
|
||
|
"Class-template absl::beta_distribution<> must be "
|
||
|
"parameterized using a floating-point type.");
|
||
|
};
|
||
|
|
||
|
beta_distribution() : beta_distribution(1) {}
|
||
|
|
||
|
explicit beta_distribution(result_type alpha, result_type beta = 1)
|
||
|
: param_(alpha, beta) {}
|
||
|
|
||
|
explicit beta_distribution(const param_type& p) : param_(p) {}
|
||
|
|
||
|
void reset() {}
|
||
|
|
||
|
// Generating functions
|
||
|
template <typename URBG>
|
||
|
result_type operator()(URBG& g) { // NOLINT(runtime/references)
|
||
|
return (*this)(g, param_);
|
||
|
}
|
||
|
|
||
|
template <typename URBG>
|
||
|
result_type operator()(URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p);
|
||
|
|
||
|
param_type param() const { return param_; }
|
||
|
void param(const param_type& p) { param_ = p; }
|
||
|
|
||
|
result_type(min)() const { return 0; }
|
||
|
result_type(max)() const { return 1; }
|
||
|
|
||
|
result_type alpha() const { return param_.alpha(); }
|
||
|
result_type beta() const { return param_.beta(); }
|
||
|
|
||
|
friend bool operator==(const beta_distribution& a,
|
||
|
const beta_distribution& b) {
|
||
|
return a.param_ == b.param_;
|
||
|
}
|
||
|
friend bool operator!=(const beta_distribution& a,
|
||
|
const beta_distribution& b) {
|
||
|
return a.param_ != b.param_;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
template <typename URBG>
|
||
|
result_type AlgorithmJoehnk(URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p);
|
||
|
|
||
|
template <typename URBG>
|
||
|
result_type AlgorithmCheng(URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p);
|
||
|
|
||
|
template <typename URBG>
|
||
|
result_type DegenerateCase(URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p) {
|
||
|
if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {
|
||
|
// Returns 0 or 1 with equal probability.
|
||
|
random_internal::FastUniformBits<uint8_t> fast_u8;
|
||
|
return static_cast<result_type>((fast_u8(g) & 0x10) !=
|
||
|
0); // pick any single bit.
|
||
|
}
|
||
|
return p.x_;
|
||
|
}
|
||
|
|
||
|
param_type param_;
|
||
|
random_internal::FastUniformBits<uint64_t> fast_u64_;
|
||
|
};
|
||
|
|
||
|
#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
|
||
|
defined(__ppc__) || defined(__PPC__)
|
||
|
// PPC needs a more stringent boundary for long double.
|
||
|
template <>
|
||
|
constexpr long double
|
||
|
beta_distribution<long double>::param_type::ThresholdPadding() {
|
||
|
return 10;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
template <typename RealType>
|
||
|
template <typename URBG>
|
||
|
typename beta_distribution<RealType>::result_type
|
||
|
beta_distribution<RealType>::AlgorithmJoehnk(
|
||
|
URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p) {
|
||
|
// Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
|
||
|
// Zufallszahlen. Metrika 8.1 (1964): 5-15.
|
||
|
// This method is described in Knuth, Vol 2 (Third Edition), pp 134.
|
||
|
using RandU64ToReal = typename random_internal::RandU64ToReal<result_type>;
|
||
|
using random_internal::PositiveValueT;
|
||
|
result_type u, v, x, y, z;
|
||
|
for (;;) {
|
||
|
u = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
|
||
|
v = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
|
||
|
|
||
|
// Direct method. std::pow is slow for float, so rely on the optimizer to
|
||
|
// remove the std::pow() path for that case.
|
||
|
if (!std::is_same<float, result_type>::value) {
|
||
|
x = std::pow(u, p.a_);
|
||
|
y = std::pow(v, p.b_);
|
||
|
z = x + y;
|
||
|
if (z > 1) {
|
||
|
// Reject if and only if `x + y > 1.0`
|
||
|
continue;
|
||
|
}
|
||
|
if (z > 0) {
|
||
|
// When both alpha and beta are small, x and y are both close to 0, so
|
||
|
// divide by (x+y) directly may result in nan.
|
||
|
return x / z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Log transform.
|
||
|
// x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )
|
||
|
// since u, v <= 1.0, x, y < 0.
|
||
|
x = std::log(u) * p.a_;
|
||
|
y = std::log(v) * p.b_;
|
||
|
if (!std::isfinite(x) || !std::isfinite(y)) {
|
||
|
continue;
|
||
|
}
|
||
|
// z = log( pow(u, a) + pow(v, b) )
|
||
|
z = x > y ? (x + std::log(1 + std::exp(y - x)))
|
||
|
: (y + std::log(1 + std::exp(x - y)));
|
||
|
// Reject iff log(x+y) > 0.
|
||
|
if (z > 0) {
|
||
|
continue;
|
||
|
}
|
||
|
return std::exp(x - z);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename RealType>
|
||
|
template <typename URBG>
|
||
|
typename beta_distribution<RealType>::result_type
|
||
|
beta_distribution<RealType>::AlgorithmCheng(
|
||
|
URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p) {
|
||
|
// Based on Cheng, Russell CH. Generating beta variates with nonintegral
|
||
|
// shape parameters. Communications of the ACM 21.4 (1978): 317-322.
|
||
|
// (https://dl.acm.org/citation.cfm?id=359482).
|
||
|
using RandU64ToReal = typename random_internal::RandU64ToReal<result_type>;
|
||
|
using random_internal::PositiveValueT;
|
||
|
|
||
|
static constexpr result_type kLogFour =
|
||
|
result_type(1.3862943611198906188344642429163531361); // log(4)
|
||
|
static constexpr result_type kS =
|
||
|
result_type(2.6094379124341003746007593332261876); // 1+log(5)
|
||
|
|
||
|
const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
|
||
|
result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
|
||
|
for (;;) {
|
||
|
u1 = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
|
||
|
u2 = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
|
||
|
v = p.y_ * std::log(u1 / (1 - u1));
|
||
|
w = p.a_ * std::exp(v);
|
||
|
bw_inv = result_type(1) / (p.b_ + w);
|
||
|
r = p.gamma_ * v - kLogFour;
|
||
|
s = p.a_ + r - w;
|
||
|
z = u1 * u1 * u2;
|
||
|
if (!use_algorithm_ba && s + kS >= 5 * z) {
|
||
|
break;
|
||
|
}
|
||
|
t = std::log(z);
|
||
|
if (!use_algorithm_ba && s >= t) {
|
||
|
break;
|
||
|
}
|
||
|
lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;
|
||
|
if (lhs >= t) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;
|
||
|
}
|
||
|
|
||
|
template <typename RealType>
|
||
|
template <typename URBG>
|
||
|
typename beta_distribution<RealType>::result_type
|
||
|
beta_distribution<RealType>::operator()(URBG& g, // NOLINT(runtime/references)
|
||
|
const param_type& p) {
|
||
|
switch (p.method_) {
|
||
|
case param_type::JOEHNK:
|
||
|
return AlgorithmJoehnk(g, p);
|
||
|
case param_type::CHENG_BA:
|
||
|
ABSL_FALLTHROUGH_INTENDED;
|
||
|
case param_type::CHENG_BB:
|
||
|
return AlgorithmCheng(g, p);
|
||
|
default:
|
||
|
return DegenerateCase(g, p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename CharT, typename Traits, typename RealType>
|
||
|
std::basic_ostream<CharT, Traits>& operator<<(
|
||
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
||
|
const beta_distribution<RealType>& x) {
|
||
|
auto saver = random_internal::make_ostream_state_saver(os);
|
||
|
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
|
||
|
os << x.alpha() << os.fill() << x.beta();
|
||
|
return os;
|
||
|
}
|
||
|
|
||
|
template <typename CharT, typename Traits, typename RealType>
|
||
|
std::basic_istream<CharT, Traits>& operator>>(
|
||
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
||
|
beta_distribution<RealType>& x) { // NOLINT(runtime/references)
|
||
|
using result_type = typename beta_distribution<RealType>::result_type;
|
||
|
using param_type = typename beta_distribution<RealType>::param_type;
|
||
|
result_type alpha, beta;
|
||
|
|
||
|
auto saver = random_internal::make_istream_state_saver(is);
|
||
|
alpha = random_internal::read_floating_point<result_type>(is);
|
||
|
if (is.fail()) return is;
|
||
|
beta = random_internal::read_floating_point<result_type>(is);
|
||
|
if (!is.fail()) {
|
||
|
x.param(param_type(alpha, beta));
|
||
|
}
|
||
|
return is;
|
||
|
}
|
||
|
|
||
|
} // namespace absl
|
||
|
|
||
|
#endif // ABSL_RANDOM_BETA_DISTRIBUTION_H_
|