|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "absl/random/uniform_int_distribution.h"
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <iterator>
|
|
|
|
#include <random>
|
|
|
|
#include <sstream>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "gmock/gmock.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "absl/base/internal/raw_logging.h"
|
|
|
|
#include "absl/random/internal/chi_square.h"
|
|
|
|
#include "absl/random/internal/distribution_test_util.h"
|
|
|
|
#include "absl/random/internal/pcg_engine.h"
|
|
|
|
#include "absl/random/internal/sequence_urbg.h"
|
|
|
|
#include "absl/random/random.h"
|
|
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
class UniformIntDistributionTest : public ::testing::Test {};
|
|
|
|
|
|
|
|
using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
|
|
|
|
uint32_t, int64_t, uint64_t>;
|
|
|
|
TYPED_TEST_SUITE(UniformIntDistributionTest, IntTypes);
|
|
|
|
|
|
|
|
TYPED_TEST(UniformIntDistributionTest, ParamSerializeTest) {
|
|
|
|
// This test essentially ensures that the parameters serialize,
|
|
|
|
// not that the values generated cover the full range.
|
|
|
|
using Limits = std::numeric_limits<TypeParam>;
|
|
|
|
using param_type =
|
|
|
|
typename absl::uniform_int_distribution<TypeParam>::param_type;
|
|
|
|
const TypeParam kMin = std::is_unsigned<TypeParam>::value ? 37 : -105;
|
|
|
|
const TypeParam kNegOneOrZero = std::is_unsigned<TypeParam>::value ? 0 : -1;
|
|
|
|
|
|
|
|
constexpr int kCount = 1000;
|
|
|
|
absl::InsecureBitGen gen;
|
|
|
|
for (const auto& param : {
|
|
|
|
param_type(),
|
|
|
|
param_type(2, 2), // Same
|
|
|
|
param_type(9, 32),
|
|
|
|
param_type(kMin, 115),
|
|
|
|
param_type(kNegOneOrZero, Limits::max()),
|
|
|
|
param_type(Limits::min(), Limits::max()),
|
|
|
|
param_type(Limits::lowest(), Limits::max()),
|
|
|
|
param_type(Limits::min() + 1, Limits::max() - 1),
|
|
|
|
}) {
|
|
|
|
const auto a = param.a();
|
|
|
|
const auto b = param.b();
|
|
|
|
absl::uniform_int_distribution<TypeParam> before(a, b);
|
|
|
|
EXPECT_EQ(before.a(), param.a());
|
|
|
|
EXPECT_EQ(before.b(), param.b());
|
|
|
|
|
|
|
|
{
|
|
|
|
// Initialize via param_type
|
|
|
|
absl::uniform_int_distribution<TypeParam> via_param(param);
|
|
|
|
EXPECT_EQ(via_param, before);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize via iostreams
|
|
|
|
std::stringstream ss;
|
|
|
|
ss << before;
|
|
|
|
|
|
|
|
absl::uniform_int_distribution<TypeParam> after(Limits::min() + 3,
|
|
|
|
Limits::max() - 5);
|
|
|
|
|
|
|
|
EXPECT_NE(before.a(), after.a());
|
|
|
|
EXPECT_NE(before.b(), after.b());
|
|
|
|
EXPECT_NE(before.param(), after.param());
|
|
|
|
EXPECT_NE(before, after);
|
|
|
|
|
|
|
|
ss >> after;
|
|
|
|
|
|
|
|
EXPECT_EQ(before.a(), after.a());
|
|
|
|
EXPECT_EQ(before.b(), after.b());
|
|
|
|
EXPECT_EQ(before.param(), after.param());
|
|
|
|
EXPECT_EQ(before, after);
|
|
|
|
|
|
|
|
// Smoke test.
|
|
|
|
auto sample_min = after.max();
|
|
|
|
auto sample_max = after.min();
|
|
|
|
for (int i = 0; i < kCount; i++) {
|
|
|
|
auto sample = after(gen);
|
|
|
|
EXPECT_GE(sample, after.min());
|
|
|
|
EXPECT_LE(sample, after.max());
|
|
|
|
if (sample > sample_max) {
|
|
|
|
sample_max = sample;
|
|
|
|
}
|
|
|
|
if (sample < sample_min) {
|
|
|
|
sample_min = sample;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::string msg = absl::StrCat("Range: ", +sample_min, ", ", +sample_max);
|
|
|
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TYPED_TEST(UniformIntDistributionTest, ViolatesPreconditionsDeathTest) {
|
|
|
|
#if GTEST_HAS_DEATH_TEST
|
|
|
|
// Hi < Lo
|
|
|
|
EXPECT_DEBUG_DEATH({ absl::uniform_int_distribution<TypeParam> dist(10, 1); },
|
|
|
|
"");
|
|
|
|
#endif // GTEST_HAS_DEATH_TEST
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
// opt-mode, for invalid parameters, will generate a garbage value,
|
|
|
|
// but should not enter an infinite loop.
|
|
|
|
absl::InsecureBitGen gen;
|
|
|
|
absl::uniform_int_distribution<TypeParam> dist(10, 1);
|
|
|
|
auto x = dist(gen);
|
|
|
|
|
|
|
|
// Any value will generate a non-empty string.
|
|
|
|
EXPECT_FALSE(absl::StrCat(+x).empty()) << x;
|
|
|
|
#endif // NDEBUG
|
|
|
|
}
|
|
|
|
|
|
|
|
TYPED_TEST(UniformIntDistributionTest, TestMoments) {
|
|
|
|
constexpr int kSize = 100000;
|
|
|
|
using Limits = std::numeric_limits<TypeParam>;
|
|
|
|
using param_type =
|
|
|
|
typename absl::uniform_int_distribution<TypeParam>::param_type;
|
|
|
|
|
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows
|
|
|
|
// these tests to be deterministic, while still testing the qualify of the
|
|
|
|
// implementation.
|
|
|
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
|
|
|
|
|
|
|
|
std::vector<double> values(kSize);
|
|
|
|
for (const auto& param :
|
|
|
|
{param_type(0, Limits::max()), param_type(13, 127)}) {
|
|
|
|
absl::uniform_int_distribution<TypeParam> dist(param);
|
|
|
|
for (int i = 0; i < kSize; i++) {
|
|
|
|
const auto sample = dist(rng);
|
|
|
|
ASSERT_LE(dist.param().a(), sample);
|
|
|
|
ASSERT_GE(dist.param().b(), sample);
|
|
|
|
values[i] = sample;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto moments = absl::random_internal::ComputeDistributionMoments(values);
|
|
|
|
const double a = dist.param().a();
|
|
|
|
const double b = dist.param().b();
|
|
|
|
const double n = (b - a + 1);
|
|
|
|
const double mean = (a + b) / 2;
|
|
|
|
const double var = ((b - a + 1) * (b - a + 1) - 1) / 12;
|
|
|
|
const double kurtosis = 3 - 6 * (n * n + 1) / (5 * (n * n - 1));
|
|
|
|
|
|
|
|
// TODO(ahh): this is not the right bound
|
|
|
|
// empirically validated with --runs_per_test=10000.
|
|
|
|
EXPECT_NEAR(mean, moments.mean, 0.01 * var);
|
|
|
|
EXPECT_NEAR(var, moments.variance, 0.015 * var);
|
|
|
|
EXPECT_NEAR(0.0, moments.skewness, 0.025);
|
|
|
|
EXPECT_NEAR(kurtosis, moments.kurtosis, 0.02 * kurtosis);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TYPED_TEST(UniformIntDistributionTest, ChiSquaredTest50) {
|
|
|
|
using absl::random_internal::kChiSquared;
|
|
|
|
|
|
|
|
constexpr size_t kTrials = 1000;
|
|
|
|
constexpr int kBuckets = 50; // inclusive, so actally +1
|
|
|
|
constexpr double kExpected =
|
|
|
|
static_cast<double>(kTrials) / static_cast<double>(kBuckets);
|
|
|
|
|
|
|
|
// Empirically validated with --runs_per_test=10000.
|
|
|
|
const int kThreshold =
|
|
|
|
absl::random_internal::ChiSquareValue(kBuckets, 0.999999);
|
|
|
|
|
|
|
|
const TypeParam min = std::is_unsigned<TypeParam>::value ? 37 : -37;
|
|
|
|
const TypeParam max = min + kBuckets;
|
|
|
|
|
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows
|
|
|
|
// these tests to be deterministic, while still testing the qualify of the
|
|
|
|
// implementation.
|
|
|
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
|
|
|
|
|
|
|
|
absl::uniform_int_distribution<TypeParam> dist(min, max);
|
|
|
|
|
|
|
|
std::vector<int32_t> counts(kBuckets + 1, 0);
|
|
|
|
for (size_t i = 0; i < kTrials; i++) {
|
|
|
|
auto x = dist(rng);
|
|
|
|
counts[x - min]++;
|
|
|
|
}
|
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected(
|
|
|
|
std::begin(counts), std::end(counts), kExpected);
|
|
|
|
if (chi_square > kThreshold) {
|
|
|
|
double p_value =
|
|
|
|
absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
|
|
|
|
|
|
|
|
// Chi-squared test failed. Output does not appear to be uniform.
|
|
|
|
std::string msg;
|
|
|
|
for (const auto& a : counts) {
|
|
|
|
absl::StrAppend(&msg, a, "\n");
|
|
|
|
}
|
|
|
|
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
|
|
|
|
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
|
|
|
|
kThreshold);
|
|
|
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str());
|
|
|
|
FAIL() << msg;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(UniformIntDistributionTest, StabilityTest) {
|
|
|
|
// absl::uniform_int_distribution stability relies only on integer operations.
|
|
|
|
absl::random_internal::sequence_urbg urbg(
|
|
|
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
|
|
|
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
|
|
|
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
|
|
|
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
|
|
|
|
|
|
|
|
std::vector<int> output(12);
|
|
|
|
|
|
|
|
{
|
|
|
|
absl::uniform_int_distribution<int32_t> dist(0, 4);
|
|
|
|
for (auto& v : output) {
|
|
|
|
v = dist(urbg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPECT_EQ(12, urbg.invocations());
|
|
|
|
EXPECT_THAT(output, testing::ElementsAre(4, 4, 3, 2, 1, 0, 1, 4, 3, 1, 3, 1));
|
|
|
|
|
|
|
|
{
|
|
|
|
urbg.reset();
|
|
|
|
absl::uniform_int_distribution<int32_t> dist(0, 100);
|
|
|
|
for (auto& v : output) {
|
|
|
|
v = dist(urbg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPECT_EQ(12, urbg.invocations());
|
|
|
|
EXPECT_THAT(output, testing::ElementsAre(97, 86, 75, 41, 36, 16, 38, 92, 67,
|
|
|
|
30, 80, 38));
|
|
|
|
|
|
|
|
{
|
|
|
|
urbg.reset();
|
|
|
|
absl::uniform_int_distribution<int32_t> dist(0, 10000);
|
|
|
|
for (auto& v : output) {
|
|
|
|
v = dist(urbg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPECT_EQ(12, urbg.invocations());
|
|
|
|
EXPECT_THAT(output, testing::ElementsAre(9648, 8562, 7439, 4089, 3571, 1602,
|
|
|
|
3813, 9195, 6641, 2986, 7956, 3765));
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|