Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

770 lines
27 KiB

Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: btree_map.h
// -----------------------------------------------------------------------------
//
// This header file defines B-tree maps: sorted associative containers mapping
// keys to values.
//
// * `absl::btree_map<>`
// * `absl::btree_multimap<>`
//
// These B-tree types are similar to the corresponding types in the STL
// (`std::map` and `std::multimap`) and generally conform to the STL interfaces
// of those types. However, because they are implemented using B-trees, they
// are more efficient in most situations.
//
// Unlike `std::map` and `std::multimap`, which are commonly implemented using
// red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold
// multiple values per node. Holding multiple values per node often makes
// B-tree maps perform better than their `std::map` counterparts, because
// multiple entries can be checked within the same cache hit.
//
// However, these types should not be considered drop-in replacements for
// `std::map` and `std::multimap` as there are some API differences, which are
// noted in this header file.
//
// Importantly, insertions and deletions may invalidate outstanding iterators,
// pointers, and references to elements. Such invalidations are typically only
// an issue if insertion and deletion operations are interleaved with the use of
// more than one iterator, pointer, or reference simultaneously. For this
// reason, `insert()` and `erase()` return a valid iterator at the current
// position.
#ifndef ABSL_CONTAINER_BTREE_MAP_H_
#define ABSL_CONTAINER_BTREE_MAP_H_
#include "absl/container/internal/btree.h" // IWYU pragma: export
#include "absl/container/internal/btree_container.h" // IWYU pragma: export
namespace absl {
ABSL_NAMESPACE_BEGIN
// absl::btree_map<>
//
// An `absl::btree_map<K, V>` is an ordered associative container of
// unique keys and associated values designed to be a more efficient replacement
// for `std::map` (in most cases).
//
// Keys are sorted using an (optional) comparison function, which defaults to
// `std::less<K>`.
//
// An `absl::btree_map<K, V>` uses a default allocator of
// `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
// nodes, and construct and destruct values within those nodes. You may
// instead specify a custom allocator `A` (which in turn requires specifying a
// custom comparator `C`) as in `absl::btree_map<K, V, C, A>`.
//
template <typename Key, typename Value, typename Compare = std::less<Key>,
typename Alloc = std::allocator<std::pair<const Key, Value>>>
class btree_map
: public container_internal::btree_map_container<
container_internal::btree<container_internal::map_params<
Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
/*Multi=*/false>>> {
using Base = typename btree_map::btree_map_container;
public:
// Constructors and Assignment Operators
//
// A `btree_map` supports the same overload set as `std::map`
// for construction and assignment:
//
// * Default constructor
//
// absl::btree_map<int, std::string> map1;
//
// * Initializer List constructor
//
// absl::btree_map<int, std::string> map2 =
// {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
//
// * Copy constructor
//
// absl::btree_map<int, std::string> map3(map2);
//
// * Copy assignment operator
//
// absl::btree_map<int, std::string> map4;
// map4 = map3;
//
// * Move constructor
//
// // Move is guaranteed efficient
// absl::btree_map<int, std::string> map5(std::move(map4));
//
// * Move assignment operator
//
// // May be efficient if allocators are compatible
// absl::btree_map<int, std::string> map6;
// map6 = std::move(map5);
//
// * Range constructor
//
// std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
// absl::btree_map<int, std::string> map7(v.begin(), v.end());
btree_map() {}
using Base::Base;
// btree_map::begin()
//
// Returns an iterator to the beginning of the `btree_map`.
using Base::begin;
// btree_map::cbegin()
//
// Returns a const iterator to the beginning of the `btree_map`.
using Base::cbegin;
// btree_map::end()
//
// Returns an iterator to the end of the `btree_map`.
using Base::end;
// btree_map::cend()
//
// Returns a const iterator to the end of the `btree_map`.
using Base::cend;
// btree_map::empty()
//
// Returns whether or not the `btree_map` is empty.
using Base::empty;
// btree_map::max_size()
//
// Returns the largest theoretical possible number of elements within a
// `btree_map` under current memory constraints. This value can be thought
// of as the largest value of `std::distance(begin(), end())` for a
// `btree_map<Key, T>`.
using Base::max_size;
// btree_map::size()
//
// Returns the number of elements currently within the `btree_map`.
using Base::size;
// btree_map::clear()
//
// Removes all elements from the `btree_map`. Invalidates any references,
// pointers, or iterators referring to contained elements.
using Base::clear;
// btree_map::erase()
//
// Erases elements within the `btree_map`. If an erase occurs, any references,
// pointers, or iterators are invalidated.
// Overloads are listed below.
//
// iterator erase(iterator position):
// iterator erase(const_iterator position):
//
// Erases the element at `position` of the `btree_map`, returning
// the iterator pointing to the element after the one that was erased
// (or end() if none exists).
//
// iterator erase(const_iterator first, const_iterator last):
//
// Erases the elements in the open interval [`first`, `last`), returning
// the iterator pointing to the element after the interval that was erased
// (or end() if none exists).
//
// template <typename K> size_type erase(const K& key):
//
// Erases the element with the matching key, if it exists, returning the
// number of elements erased (0 or 1).
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
using Base::erase;
// btree_map::insert()
//
// Inserts an element of the specified value into the `btree_map`,
// returning an iterator pointing to the newly inserted element, provided that
// an element with the given key does not already exist. If an insertion
// occurs, any references, pointers, or iterators are invalidated.
// Overloads are listed below.
//
// std::pair<iterator,bool> insert(const value_type& value):
//
// Inserts a value into the `btree_map`. Returns a pair consisting of an
// iterator to the inserted element (or to the element that prevented the
// insertion) and a bool denoting whether the insertion took place.
//
// std::pair<iterator,bool> insert(value_type&& value):
//
// Inserts a moveable value into the `btree_map`. Returns a pair
// consisting of an iterator to the inserted element (or to the element that
// prevented the insertion) and a bool denoting whether the insertion took
// place.
//
// iterator insert(const_iterator hint, const value_type& value):
// iterator insert(const_iterator hint, value_type&& value):
//
// Inserts a value, using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search. Returns an iterator to the
// inserted element, or to the existing element that prevented the
// insertion.
//
// void insert(InputIterator first, InputIterator last):
//
// Inserts a range of values [`first`, `last`).
//
// void insert(std::initializer_list<init_type> ilist):
//
// Inserts the elements within the initializer list `ilist`.
using Base::insert;
// btree_map::insert_or_assign()
//
// Inserts an element of the specified value into the `btree_map` provided
// that a value with the given key does not already exist, or replaces the
// corresponding mapped type with the forwarded `obj` argument if a key for
// that value already exists, returning an iterator pointing to the newly
// inserted element. Overloads are listed below.
//
// pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj):
// pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj):
//
// Inserts/Assigns (or moves) the element of the specified key into the
// `btree_map`. If the returned bool is true, insertion took place, and if
// it's false, assignment took place.
//
// iterator insert_or_assign(const_iterator hint,
// const key_type& k, M&& obj):
// iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj):
//
// Inserts/Assigns (or moves) the element of the specified key into the
// `btree_map` using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search.
using Base::insert_or_assign;
// btree_map::emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `btree_map`, provided that no element with the given key
// already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If an insertion occurs, any references, pointers, or iterators are
// invalidated.
using Base::emplace;
// btree_map::emplace_hint()
//
// Inserts an element of the specified value by constructing it in-place
// within the `btree_map`, using the position of `hint` as a non-binding
// suggestion for where to begin the insertion search, and only inserts
// provided that no element with the given key already exists.
//
// The element may be constructed even if there already is an element with the
// key in the container, in which case the newly constructed element will be
// destroyed immediately. Prefer `try_emplace()` unless your key is not
// copyable or moveable.
//
// If an insertion occurs, any references, pointers, or iterators are
// invalidated.
using Base::emplace_hint;
// btree_map::try_emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `btree_map`, provided that no element with the given key
// already exists. Unlike `emplace()`, if an element with the given key
// already exists, we guarantee that no element is constructed.
//
// If an insertion occurs, any references, pointers, or iterators are
// invalidated.
//
// Overloads are listed below.
//
// std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
// std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
//
// Inserts (via copy or move) the element of the specified key into the
// `btree_map`.
//
// iterator try_emplace(const_iterator hint,
// const key_type& k, Args&&... args):
// iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
//
// Inserts (via copy or move) the element of the specified key into the
// `btree_map` using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search.
using Base::try_emplace;
// btree_map::extract()
//
// Extracts the indicated element, erasing it in the process, and returns it
// as a C++17-compatible node handle. Overloads are listed below.
//
// node_type extract(const_iterator position):
//
// Extracts the element at the indicated position and returns a node handle
// owning that extracted data.
//
// template <typename K> node_type extract(const K& k):
//
// Extracts the element with the key matching the passed key value and
// returns a node handle owning that extracted data. If the `btree_map`
// does not contain an element with a matching key, this function returns an
// empty node handle.
//
// NOTE: when compiled in an earlier version of C++ than C++17,
// `node_type::key()` returns a const reference to the key instead of a
// mutable reference. We cannot safely return a mutable reference without
// std::launder (which is not available before C++17).
//
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// NOTE: In this context, `node_type` refers to the C++17 concept of a
// move-only type that owns and provides access to the elements in associative
// containers (https://en.cppreference.com/w/cpp/container/node_handle).
// It does NOT refer to the data layout of the underlying btree.
using Base::extract;
// btree_map::merge()
//
// Extracts elements from a given `source` btree_map into this
// `btree_map`. If the destination `btree_map` already contains an
// element with an equivalent key, that element is not extracted.
using Base::merge;
// btree_map::swap(btree_map& other)
//
// Exchanges the contents of this `btree_map` with those of the `other`
// btree_map, avoiding invocation of any move, copy, or swap operations on
// individual elements.
//
// All iterators and references on the `btree_map` remain valid, excepting
// for the past-the-end iterator, which is invalidated.
using Base::swap;
// btree_map::at()
//
// Returns a reference to the mapped value of the element with key equivalent
// to the passed key.
using Base::at;
// btree_map::contains()
//
// template <typename K> bool contains(const K& key) const:
//
// Determines whether an element comparing equal to the given `key` exists
// within the `btree_map`, returning `true` if so or `false` otherwise.
//
// Supports heterogeneous lookup, provided that the map is provided a
// compatible heterogeneous comparator.
using Base::contains;
// btree_map::count()
//
// template <typename K> size_type count(const K& key) const:
//
// Returns the number of elements comparing equal to the given `key` within
// the `btree_map`. Note that this function will return either `1` or `0`
// since duplicate elements are not allowed within a `btree_map`.
//
// Supports heterogeneous lookup, provided that the map is provided a
// compatible heterogeneous comparator.
using Base::count;
// btree_map::equal_range()
//
// Returns a closed range [first, last], defined by a `std::pair` of two
// iterators, containing all elements with the passed key in the
// `btree_map`.
using Base::equal_range;
// btree_map::find()
//
// template <typename K> iterator find(const K& key):
// template <typename K> const_iterator find(const K& key) const:
//
// Finds an element with the passed `key` within the `btree_map`.
//
// Supports heterogeneous lookup, provided that the map is provided a
// compatible heterogeneous comparator.
using Base::find;
// btree_map::operator[]()
//
// Returns a reference to the value mapped to the passed key within the
// `btree_map`, performing an `insert()` if the key does not already
// exist.
//
// If an insertion occurs, any references, pointers, or iterators are
// invalidated. Otherwise iterators are not affected and references are not
// invalidated. Overloads are listed below.
//
// T& operator[](key_type&& key):
// T& operator[](const key_type& key):
//
// Inserts a value_type object constructed in-place if the element with the
// given key does not exist.
using Base::operator[];
// btree_map::get_allocator()
//
// Returns the allocator function associated with this `btree_map`.
using Base::get_allocator;
// btree_map::key_comp();
//
// Returns the key comparator associated with this `btree_map`.
using Base::key_comp;
// btree_map::value_comp();
//
// Returns the value comparator associated with this `btree_map`.
using Base::value_comp;
};
// absl::swap(absl::btree_map<>, absl::btree_map<>)
//
// Swaps the contents of two `absl::btree_map` containers.
template <typename K, typename V, typename C, typename A>
void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) {
return x.swap(y);
}
// absl::erase_if(absl::btree_map<>, Pred)
//
// Erases all elements that satisfy the predicate pred from the container.
template <typename K, typename V, typename C, typename A, typename Pred>
void erase_if(btree_map<K, V, C, A> &map, Pred pred) {
for (auto it = map.begin(); it != map.end();) {
if (pred(*it)) {
it = map.erase(it);
} else {
++it;
}
}
}
// absl::btree_multimap
//
// An `absl::btree_multimap<K, V>` is an ordered associative container of
// keys and associated values designed to be a more efficient replacement for
// `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap
// allows multiple elements with equivalent keys.
//
// Keys are sorted using an (optional) comparison function, which defaults to
// `std::less<K>`.
//
// An `absl::btree_multimap<K, V>` uses a default allocator of
// `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
// nodes, and construct and destruct values within those nodes. You may
// instead specify a custom allocator `A` (which in turn requires specifying a
// custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`.
//
template <typename Key, typename Value, typename Compare = std::less<Key>,
typename Alloc = std::allocator<std::pair<const Key, Value>>>
class btree_multimap
: public container_internal::btree_multimap_container<
container_internal::btree<container_internal::map_params<
Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
/*Multi=*/true>>> {
using Base = typename btree_multimap::btree_multimap_container;
public:
// Constructors and Assignment Operators
//
// A `btree_multimap` supports the same overload set as `std::multimap`
// for construction and assignment:
//
// * Default constructor
//
// absl::btree_multimap<int, std::string> map1;
//
// * Initializer List constructor
//
// absl::btree_multimap<int, std::string> map2 =
// {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
//
// * Copy constructor
//
// absl::btree_multimap<int, std::string> map3(map2);
//
// * Copy assignment operator
//
// absl::btree_multimap<int, std::string> map4;
// map4 = map3;
//
// * Move constructor
//
// // Move is guaranteed efficient
// absl::btree_multimap<int, std::string> map5(std::move(map4));
//
// * Move assignment operator
//
// // May be efficient if allocators are compatible
// absl::btree_multimap<int, std::string> map6;
// map6 = std::move(map5);
//
// * Range constructor
//
// std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
// absl::btree_multimap<int, std::string> map7(v.begin(), v.end());
btree_multimap() {}
using Base::Base;
// btree_multimap::begin()
//
// Returns an iterator to the beginning of the `btree_multimap`.
using Base::begin;
// btree_multimap::cbegin()
//
// Returns a const iterator to the beginning of the `btree_multimap`.
using Base::cbegin;
// btree_multimap::end()
//
// Returns an iterator to the end of the `btree_multimap`.
using Base::end;
// btree_multimap::cend()
//
// Returns a const iterator to the end of the `btree_multimap`.
using Base::cend;
// btree_multimap::empty()
//
// Returns whether or not the `btree_multimap` is empty.
using Base::empty;
// btree_multimap::max_size()
//
// Returns the largest theoretical possible number of elements within a
// `btree_multimap` under current memory constraints. This value can be
// thought of as the largest value of `std::distance(begin(), end())` for a
// `btree_multimap<Key, T>`.
using Base::max_size;
// btree_multimap::size()
//
// Returns the number of elements currently within the `btree_multimap`.
using Base::size;
// btree_multimap::clear()
//
// Removes all elements from the `btree_multimap`. Invalidates any references,
// pointers, or iterators referring to contained elements.
using Base::clear;
// btree_multimap::erase()
//
// Erases elements within the `btree_multimap`. If an erase occurs, any
// references, pointers, or iterators are invalidated.
// Overloads are listed below.
//
// iterator erase(iterator position):
// iterator erase(const_iterator position):
//
// Erases the element at `position` of the `btree_multimap`, returning
// the iterator pointing to the element after the one that was erased
// (or end() if none exists).
//
// iterator erase(const_iterator first, const_iterator last):
//
// Erases the elements in the open interval [`first`, `last`), returning
// the iterator pointing to the element after the interval that was erased
// (or end() if none exists).
//
// template <typename K> size_type erase(const K& key):
//
// Erases the elements matching the key, if any exist, returning the
// number of elements erased.
using Base::erase;
// btree_multimap::insert()
//
// Inserts an element of the specified value into the `btree_multimap`,
// returning an iterator pointing to the newly inserted element.
// Any references, pointers, or iterators are invalidated. Overloads are
// listed below.
//
// iterator insert(const value_type& value):
//
// Inserts a value into the `btree_multimap`, returning an iterator to the
// inserted element.
//
// iterator insert(value_type&& value):
//
// Inserts a moveable value into the `btree_multimap`, returning an iterator
// to the inserted element.
//
// iterator insert(const_iterator hint, const value_type& value):
// iterator insert(const_iterator hint, value_type&& value):
//
// Inserts a value, using the position of `hint` as a non-binding suggestion
// for where to begin the insertion search. Returns an iterator to the
// inserted element.
//
// void insert(InputIterator first, InputIterator last):
//
// Inserts a range of values [`first`, `last`).
//
// void insert(std::initializer_list<init_type> ilist):
//
// Inserts the elements within the initializer list `ilist`.
using Base::insert;
// btree_multimap::emplace()
//
// Inserts an element of the specified value by constructing it in-place
// within the `btree_multimap`. Any references, pointers, or iterators are
// invalidated.
using Base::emplace;
// btree_multimap::emplace_hint()
//
// Inserts an element of the specified value by constructing it in-place
// within the `btree_multimap`, using the position of `hint` as a non-binding
// suggestion for where to begin the insertion search.
//
// Any references, pointers, or iterators are invalidated.
using Base::emplace_hint;
// btree_multimap::extract()
//
// Extracts the indicated element, erasing it in the process, and returns it
// as a C++17-compatible node handle. Overloads are listed below.
//
// node_type extract(const_iterator position):
//
// Extracts the element at the indicated position and returns a node handle
// owning that extracted data.
//
// template <typename K> node_type extract(const K& k):
//
// Extracts the element with the key matching the passed key value and
// returns a node handle owning that extracted data. If the `btree_multimap`
// does not contain an element with a matching key, this function returns an
// empty node handle.
//
// NOTE: when compiled in an earlier version of C++ than C++17,
// `node_type::key()` returns a const reference to the key instead of a
// mutable reference. We cannot safely return a mutable reference without
// std::launder (which is not available before C++17).
//
Export of internal Abseil changes -- f012012ef78234a6a4585321b67d7b7c92ebc266 by Laramie Leavitt <lar@google.com>: Slight restructuring of absl/random/internal randen implementation. Convert round-keys.inc into randen_round_keys.cc file. Consistently use a 128-bit pointer type for internal method parameters. This allows simpler pointer arithmetic in C++ & permits removal of some constants and casts. Remove some redundancy in comments & constexpr variables. Specifically, all references to Randen algorithm parameters use RandenTraits; duplication in RandenSlow removed. PiperOrigin-RevId: 312190313 -- dc8b42e054046741e9ed65335bfdface997c6063 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 312167304 -- f13d248fafaf206492c1362c3574031aea3abaf7 by Matthew Brown <matthewbr@google.com>: Cleanup StrFormat extensions a little. PiperOrigin-RevId: 312166336 -- 9d9117589667afe2332bb7ad42bc967ca7c54502 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 312105213 -- 9a12b9b3aa0e59b8ee6cf9408ed0029045543a9b by Abseil Team <absl-team@google.com>: Complete IGNORE_TYPE macro renaming. PiperOrigin-RevId: 311999699 -- 64756f20d61021d999bd0d4c15e9ad3857382f57 by Gennadiy Rozental <rogeeff@google.com>: Switch to fixed bytes specific default value. This fixes the Abseil Flags for big endian platforms. PiperOrigin-RevId: 311844448 -- bdbe6b5b29791dbc3816ada1828458b3010ff1e9 by Laramie Leavitt <lar@google.com>: Change many distribution tests to use pcg_engine as a deterministic source of entropy. It's reasonable to test that the BitGen itself has good entropy, however when testing the cross product of all random distributions x all the architecture variations x all submitted changes results in a large number of tests. In order to account for these failures while still using good entropy requires that our allowed sigma need to account for all of these independent tests. Our current sigma values are too restrictive, and we see a lot of failures, so we have to either relax the sigma values or convert some of the statistical tests to use deterministic values. This changelist does the latter. PiperOrigin-RevId: 311840096 GitOrigin-RevId: f012012ef78234a6a4585321b67d7b7c92ebc266 Change-Id: Ic84886f38ff30d7d72c126e9b63c9a61eb729a1a
5 years ago
// NOTE: In this context, `node_type` refers to the C++17 concept of a
// move-only type that owns and provides access to the elements in associative
// containers (https://en.cppreference.com/w/cpp/container/node_handle).
// It does NOT refer to the data layout of the underlying btree.
using Base::extract;
// btree_multimap::merge()
//
// Extracts elements from a given `source` btree_multimap into this
// `btree_multimap`. If the destination `btree_multimap` already contains an
// element with an equivalent key, that element is not extracted.
using Base::merge;
// btree_multimap::swap(btree_multimap& other)
//
// Exchanges the contents of this `btree_multimap` with those of the `other`
// btree_multimap, avoiding invocation of any move, copy, or swap operations
// on individual elements.
//
// All iterators and references on the `btree_multimap` remain valid,
// excepting for the past-the-end iterator, which is invalidated.
using Base::swap;
// btree_multimap::contains()
//
// template <typename K> bool contains(const K& key) const:
//
// Determines whether an element comparing equal to the given `key` exists
// within the `btree_multimap`, returning `true` if so or `false` otherwise.
//
// Supports heterogeneous lookup, provided that the map is provided a
// compatible heterogeneous comparator.
using Base::contains;
// btree_multimap::count()
//
// template <typename K> size_type count(const K& key) const:
//
// Returns the number of elements comparing equal to the given `key` within
// the `btree_multimap`.
//
// Supports heterogeneous lookup, provided that the map is provided a
// compatible heterogeneous comparator.
using Base::count;
// btree_multimap::equal_range()
//
// Returns a closed range [first, last], defined by a `std::pair` of two
// iterators, containing all elements with the passed key in the
// `btree_multimap`.
using Base::equal_range;
// btree_multimap::find()
//
// template <typename K> iterator find(const K& key):
// template <typename K> const_iterator find(const K& key) const:
//
// Finds an element with the passed `key` within the `btree_multimap`.
//
// Supports heterogeneous lookup, provided that the map is provided a
// compatible heterogeneous comparator.
using Base::find;
// btree_multimap::get_allocator()
//
// Returns the allocator function associated with this `btree_multimap`.
using Base::get_allocator;
// btree_multimap::key_comp();
//
// Returns the key comparator associated with this `btree_multimap`.
using Base::key_comp;
// btree_multimap::value_comp();
//
// Returns the value comparator associated with this `btree_multimap`.
using Base::value_comp;
};
// absl::swap(absl::btree_multimap<>, absl::btree_multimap<>)
//
// Swaps the contents of two `absl::btree_multimap` containers.
template <typename K, typename V, typename C, typename A>
void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) {
return x.swap(y);
}
// absl::erase_if(absl::btree_multimap<>, Pred)
//
// Erases all elements that satisfy the predicate pred from the container.
template <typename K, typename V, typename C, typename A, typename Pred>
void erase_if(btree_multimap<K, V, C, A> &map, Pred pred) {
for (auto it = map.begin(); it != map.end();) {
if (pred(*it)) {
it = map.erase(it);
} else {
++it;
}
}
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_BTREE_MAP_H_