|
|
|
// Copyright 2017 The Abseil Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
//
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// File: uniform_int_distribution.h
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// This header defines a class for representing a uniform integer distribution
|
|
|
|
// over the closed (inclusive) interval [a,b]. You use this distribution in
|
|
|
|
// combination with an Abseil random bit generator to produce random values
|
|
|
|
// according to the rules of the distribution.
|
|
|
|
//
|
|
|
|
// `absl::uniform_int_distribution` is a drop-in replacement for the C++11
|
|
|
|
// `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably
|
|
|
|
// faster than the libstdc++ implementation.
|
|
|
|
|
|
|
|
#ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
|
|
|
|
#define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
#include <istream>
|
|
|
|
#include <limits>
|
|
|
|
#include <type_traits>
|
|
|
|
|
|
|
|
#include "absl/base/optimization.h"
|
|
|
|
#include "absl/random/internal/fast_uniform_bits.h"
|
|
|
|
#include "absl/random/internal/iostream_state_saver.h"
|
|
|
|
#include "absl/random/internal/traits.h"
|
|
|
|
#include "absl/random/internal/wide_multiply.h"
|
|
|
|
|
|
|
|
namespace absl {
|
|
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
// absl::uniform_int_distribution<T>
|
|
|
|
//
|
|
|
|
// This distribution produces random integer values uniformly distributed in the
|
|
|
|
// closed (inclusive) interval [a, b].
|
|
|
|
//
|
|
|
|
// Example:
|
|
|
|
//
|
|
|
|
// absl::BitGen gen;
|
|
|
|
//
|
|
|
|
// // Use the distribution to produce a value between 1 and 6, inclusive.
|
|
|
|
// int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen);
|
|
|
|
//
|
|
|
|
template <typename IntType = int>
|
|
|
|
class uniform_int_distribution {
|
|
|
|
private:
|
|
|
|
using unsigned_type =
|
|
|
|
typename random_internal::make_unsigned_bits<IntType>::type;
|
|
|
|
|
|
|
|
public:
|
|
|
|
using result_type = IntType;
|
|
|
|
|
|
|
|
class param_type {
|
|
|
|
public:
|
|
|
|
using distribution_type = uniform_int_distribution;
|
|
|
|
|
|
|
|
explicit param_type(
|
|
|
|
result_type lo = 0,
|
|
|
|
result_type hi = (std::numeric_limits<result_type>::max)())
|
|
|
|
: lo_(lo),
|
|
|
|
range_(static_cast<unsigned_type>(hi) -
|
|
|
|
static_cast<unsigned_type>(lo)) {
|
|
|
|
// [rand.dist.uni.int] precondition 2
|
|
|
|
assert(lo <= hi);
|
|
|
|
}
|
|
|
|
|
|
|
|
result_type a() const { return lo_; }
|
|
|
|
result_type b() const {
|
|
|
|
return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_);
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator==(const param_type& a, const param_type& b) {
|
|
|
|
return a.lo_ == b.lo_ && a.range_ == b.range_;
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) {
|
|
|
|
return !(a == b);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
friend class uniform_int_distribution;
|
|
|
|
unsigned_type range() const { return range_; }
|
|
|
|
|
|
|
|
result_type lo_;
|
|
|
|
unsigned_type range_;
|
|
|
|
|
|
|
|
static_assert(random_internal::IsIntegral<result_type>::value,
|
|
|
|
"Class-template absl::uniform_int_distribution<> must be "
|
|
|
|
"parameterized using an integral type.");
|
|
|
|
}; // param_type
|
|
|
|
|
|
|
|
uniform_int_distribution() : uniform_int_distribution(0) {}
|
|
|
|
|
|
|
|
explicit uniform_int_distribution(
|
|
|
|
result_type lo,
|
|
|
|
result_type hi = (std::numeric_limits<result_type>::max)())
|
|
|
|
: param_(lo, hi) {}
|
|
|
|
|
|
|
|
explicit uniform_int_distribution(const param_type& param) : param_(param) {}
|
|
|
|
|
|
|
|
// uniform_int_distribution<T>::reset()
|
|
|
|
//
|
|
|
|
// Resets the uniform int distribution. Note that this function has no effect
|
|
|
|
// because the distribution already produces independent values.
|
|
|
|
void reset() {}
|
|
|
|
|
|
|
|
template <typename URBG>
|
|
|
|
result_type operator()(URBG& gen) { // NOLINT(runtime/references)
|
|
|
|
return (*this)(gen, param());
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename URBG>
|
|
|
|
result_type operator()(
|
|
|
|
URBG& gen, const param_type& param) { // NOLINT(runtime/references)
|
|
|
|
return static_cast<result_type>(param.a() + Generate(gen, param.range()));
|
|
|
|
}
|
|
|
|
|
|
|
|
result_type a() const { return param_.a(); }
|
|
|
|
result_type b() const { return param_.b(); }
|
|
|
|
|
|
|
|
param_type param() const { return param_; }
|
|
|
|
void param(const param_type& params) { param_ = params; }
|
|
|
|
|
|
|
|
result_type(min)() const { return a(); }
|
|
|
|
result_type(max)() const { return b(); }
|
|
|
|
|
|
|
|
friend bool operator==(const uniform_int_distribution& a,
|
|
|
|
const uniform_int_distribution& b) {
|
|
|
|
return a.param_ == b.param_;
|
|
|
|
}
|
|
|
|
friend bool operator!=(const uniform_int_distribution& a,
|
|
|
|
const uniform_int_distribution& b) {
|
|
|
|
return !(a == b);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Generates a value in the *closed* interval [0, R]
|
|
|
|
template <typename URBG>
|
|
|
|
unsigned_type Generate(URBG& g, // NOLINT(runtime/references)
|
|
|
|
unsigned_type R);
|
|
|
|
param_type param_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation details follow
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
|
|
std::basic_ostream<CharT, Traits>& operator<<(
|
|
|
|
std::basic_ostream<CharT, Traits>& os,
|
|
|
|
const uniform_int_distribution<IntType>& x) {
|
|
|
|
using stream_type =
|
|
|
|
typename random_internal::stream_format_type<IntType>::type;
|
|
|
|
auto saver = random_internal::make_ostream_state_saver(os);
|
|
|
|
os << static_cast<stream_type>(x.a()) << os.fill()
|
|
|
|
<< static_cast<stream_type>(x.b());
|
|
|
|
return os;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
|
|
std::basic_istream<CharT, Traits>& operator>>(
|
|
|
|
std::basic_istream<CharT, Traits>& is,
|
|
|
|
uniform_int_distribution<IntType>& x) {
|
|
|
|
using param_type = typename uniform_int_distribution<IntType>::param_type;
|
|
|
|
using result_type = typename uniform_int_distribution<IntType>::result_type;
|
|
|
|
using stream_type =
|
|
|
|
typename random_internal::stream_format_type<IntType>::type;
|
|
|
|
|
|
|
|
stream_type a;
|
|
|
|
stream_type b;
|
|
|
|
|
|
|
|
auto saver = random_internal::make_istream_state_saver(is);
|
|
|
|
is >> a >> b;
|
|
|
|
if (!is.fail()) {
|
|
|
|
x.param(
|
|
|
|
param_type(static_cast<result_type>(a), static_cast<result_type>(b)));
|
|
|
|
}
|
|
|
|
return is;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
template <typename URBG>
|
|
|
|
typename random_internal::make_unsigned_bits<IntType>::type
|
|
|
|
uniform_int_distribution<IntType>::Generate(
|
|
|
|
URBG& g, // NOLINT(runtime/references)
|
|
|
|
typename random_internal::make_unsigned_bits<IntType>::type R) {
|
Export of internal Abseil changes
--
92811d3307196b2810bdc3c7e50ef9544db3f23b by CJ Johnson <johnsoncj@google.com>:
Refactor InlinedVector's OverheadTest.Storage test to be easier to understand and modify in the future
PiperOrigin-RevId: 342718098
--
cf3f2af201775f9c4e68dd2f9806126aecbd0748 by Abseil Team <absl-team@google.com>:
Implement `reserve` more explicit to avoid calling `rehash`.
`reserve` is much more widely used method and doesn't need extra logic present in `rehash`.
E. g., accidental `t.reserve(0)` on non empty table shouldn't cause rehashing, which was a case before this change.
It also remove some unnecessary computations from `reserve`.
Was:
```
GrowthToLowerboundCapacity 2x
NormalizeCapacity 1x
bitwise | 1x
n == 0 && capacity_ == 0 1x
n == 0 && size_ == 0 1x
n == 0 1x
|| 1x
m > capacity_ 1x
overall branches 6x
(GrowthToLowerboundCapacity 2x, NormalizeCapacity 1x, rehash 3x)
```
Now:
```
GrowthToLowerboundCapacity 1x
NormalizeCapacity 1x
bitwise | 0x
n == 0 && capacity_ == 0 0x
n == 0 && size_ == 0 0x
n == 0 0x
|| 0x
m > capacity_ 1x
overall branches 3x
(GrowthToLowerboundCapacity 1x, NormalizeCapacity 1x, reserve 1x)
```
PiperOrigin-RevId: 342714022
--
c2ab8c1e4091ff685110c81bae12e3567e0cded3 by Abseil Team <absl-team@google.com>:
Remove `reset_growth_left` call, which already happen in `initialize_slots`.
PiperOrigin-RevId: 342701073
--
3f41ccb70afabec8bc0dcfcca3e3ac918726bb92 by Derek Mauro <dmauro@google.com>:
Use memmove instead of memcpy in situations where the source and
destination may point to the same buffer
Note that the OSS Abseil code never calls CUnescapeInternal with
leave_nulls_scaped=true, so there is no bug in the OSS code.
Fixes #844
PiperOrigin-RevId: 342633781
--
57afb2c307b008b9f9daaa736b49c066e0075e39 by Abseil Team <absl-team@google.com>:
Add absl::Round() for absl::Duration as a complementary to Floor, Ceil and Trunc. Rounding halfway cases away from zero as std::round() does.
PiperOrigin-RevId: 342610871
--
c49754ecddb9339eff60b826dc17b3b459333bc0 by Abseil Team <absl-team@google.com>:
Add absl::Round() for absl::Duration as a complementary to Floor, Ceil and Trunc. Rounding halfway cases away from zero as std::round() does.
PiperOrigin-RevId: 342594847
--
b51bd29233aaee6ef241de984635356d26c93e4d by Abseil Team <absl-team@google.com>:
Move `ConvertDeletedToEmptyAndFullToDeleted` to cc file.
This function is cold and only used when table become polluted with deleted slots.
So this shouldn't negatively affect performance and considered safe.
This change is reducing linkage and binary size.
PiperOrigin-RevId: 342319685
--
acb83c004d14e563a3b47dcfcb6c5508bee6408f by Abseil Team <absl-team@google.com>:
Fix indentation in uniform_int_distribution.h.
PiperOrigin-RevId: 342297575
GitOrigin-RevId: 92811d3307196b2810bdc3c7e50ef9544db3f23b
Change-Id: I4fbaf4aab122d5c939ae9a3ef46ee8cca3df75e6
4 years ago
|
|
|
random_internal::FastUniformBits<unsigned_type> fast_bits;
|
|
|
|
unsigned_type bits = fast_bits(g);
|
|
|
|
const unsigned_type Lim = R + 1;
|
|
|
|
if ((R & Lim) == 0) {
|
|
|
|
// If the interval's length is a power of two range, just take the low bits.
|
|
|
|
return bits & R;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Generates a uniform variate on [0, Lim) using fixed-point multiplication.
|
|
|
|
// The above fast-path guarantees that Lim is representable in unsigned_type.
|
|
|
|
//
|
|
|
|
// Algorithm adapted from
|
|
|
|
// http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added
|
|
|
|
// explanation.
|
|
|
|
//
|
|
|
|
// The algorithm creates a uniform variate `bits` in the interval [0, 2^N),
|
|
|
|
// and treats it as the fractional part of a fixed-point real value in [0, 1),
|
|
|
|
// multiplied by 2^N. For example, 0.25 would be represented as 2^(N - 2),
|
|
|
|
// because 2^N * 0.25 == 2^(N - 2).
|
|
|
|
//
|
|
|
|
// Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the
|
|
|
|
// value into the range [0, Lim). The integral part (the high word of the
|
|
|
|
// multiplication result) is then very nearly the desired result. However,
|
|
|
|
// this is not quite accurate; viewing the multiplication result as one
|
|
|
|
// double-width integer, the resulting values for the sample are mapped as
|
|
|
|
// follows:
|
|
|
|
//
|
|
|
|
// If the result lies in this interval: Return this value:
|
|
|
|
// [0, 2^N) 0
|
|
|
|
// [2^N, 2 * 2^N) 1
|
|
|
|
// ... ...
|
|
|
|
// [K * 2^N, (K + 1) * 2^N) K
|
|
|
|
// ... ...
|
|
|
|
// [(Lim - 1) * 2^N, Lim * 2^N) Lim - 1
|
|
|
|
//
|
|
|
|
// While all of these intervals have the same size, the result of `bits * Lim`
|
|
|
|
// must be a multiple of `Lim`, and not all of these intervals contain the
|
|
|
|
// same number of multiples of `Lim`. In particular, some contain
|
|
|
|
// `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`. This
|
|
|
|
// difference produces a small nonuniformity, which is corrected by applying
|
|
|
|
// rejection sampling to one of the values in the "larger intervals" (i.e.,
|
|
|
|
// the intervals containing `F + 1` multiples of `Lim`.
|
|
|
|
//
|
|
|
|
// An interval contains `F + 1` multiples of `Lim` if and only if its smallest
|
|
|
|
// value modulo 2^N is less than `2^N % Lim`. The unique value satisfying
|
|
|
|
// this property is used as the one for rejection. That is, a value of
|
|
|
|
// `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`.
|
|
|
|
|
|
|
|
using helper = random_internal::wide_multiply<unsigned_type>;
|
|
|
|
auto product = helper::multiply(bits, Lim);
|
|
|
|
|
|
|
|
// Two optimizations here:
|
|
|
|
// * Rejection occurs with some probability less than 1/2, and for reasonable
|
|
|
|
// ranges considerably less (in particular, less than 1/(F+1)), so
|
|
|
|
// ABSL_PREDICT_FALSE is apt.
|
|
|
|
// * `Lim` is an overestimate of `threshold`, and doesn't require a divide.
|
|
|
|
if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) {
|
|
|
|
// This quantity is exactly equal to `2^N % Lim`, but does not require high
|
|
|
|
// precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`.
|
|
|
|
// Ideally this could be expressed simply as `-X` rather than `2^N - X`, but
|
|
|
|
// for types smaller than int, this calculation is incorrect due to integer
|
|
|
|
// promotion rules.
|
|
|
|
const unsigned_type threshold =
|
|
|
|
((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim;
|
|
|
|
while (helper::lo(product) < threshold) {
|
|
|
|
bits = fast_bits(g);
|
|
|
|
product = helper::multiply(bits, Lim);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return helper::hi(product);
|
|
|
|
}
|
|
|
|
|
|
|
|
ABSL_NAMESPACE_END
|
|
|
|
} // namespace absl
|
|
|
|
|
|
|
|
#endif // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
|