You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

2.6 KiB

YOLOv8-cls Model with TensorRT

The yolov8-cls model conversion route is : YOLOv8 PyTorch model -> ONNX -> TensorRT Engine

Notice !!! We don't support TensorRT API building !!!

Export Orin ONNX model by ultralytics

You can leave this repo and use the original ultralytics repo for onnx export.

1. ONNX -> TensorRT

You can export your onnx model by ultralytics API.

yolo export model=yolov8s-cls.pt format=onnx opset=11 simplify=True

or run this python script:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8s-cls.pt")  # load a pretrained model (recommended for training)
success = model.export(format="onnx", opset=11, simplify=True)  # export the model to onnx format
assert success

Then build engine by Trtexec Tools.

You can export TensorRT engine by trtexec tools.

Usage:

/usr/src/tensorrt/bin/trtexec \
--onnx=yolov8s-cls.onnx \
--saveEngine=yolov8s-cls.engine \
--fp16

2. Direct to TensorRT (NOT RECOMMAND!!)

Usage:

yolo export model=yolov8s-cls.pt format=engine device=0

or run python script:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8s-cls.pt")  # load a pretrained model (recommended for training)
success = model.export(format="engine", device=0)  # export the model to engine format
assert success

After executing the above script, you will get an engine named yolov8s-cls.engine .

Inference

Infer with python script

You can infer images with the engine by infer-cls.py .

Usage:

python3 infer-cls.py \
--engine yolov8s-cls.engine \
--imgs data \
--show \
--out-dir outputs \
--device cuda:0

Description of all arguments

  • --engine : The Engine you export.
  • --imgs : The images path you want to detect.
  • --show : Whether to show detection results.
  • --out-dir : Where to save detection results images. It will not work when use --show flag.
  • --device : The CUDA deivce you use.

Inference with c++

You can infer with c++ in csrc/cls/normal .

Build:

Please set you own librarys in CMakeLists.txt and modify CLASS_NAMES in main.cpp.

And build:

export root=${PWD}
cd src/cls/normal
mkdir build
cmake ..
make
mv yolov8-cls ${root}
cd ${root}

Usage:

# infer image
./yolov8-cls yolov8s-cls.engine data/bus.jpg
# infer images
./yolov8-cls yolov8s-cls.engine data
# infer video
./yolov8-cls yolov8s-cls.engine data/test.mp4 # the video path