You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

265 lines
9.8 KiB

from models import TRTModule, TRTProfilerV0 # isort:skip
import argparse
import os
import random
from pathlib import Path
from typing import Any, List, Tuple, Union
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from numpy import ndarray
from torch import Tensor
from torchvision.ops import batched_nms
os.environ['CUDA_MODULE_LOADING'] = 'LAZY'
random.seed(0)
SUFFIXS = ('.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff',
'.webp', '.pfm')
CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush')
COLORS = {
cls: [random.randint(0, 255) for _ in range(3)]
for i, cls in enumerate(CLASSES)
}
# the same as yolov8
MASK_COLORS = np.array([(255, 56, 56), (255, 157, 151), (255, 112, 31),
(255, 178, 29), (207, 210, 49), (72, 249, 10),
(146, 204, 23), (61, 219, 134), (26, 147, 52),
(0, 212, 187), (44, 153, 168), (0, 194, 255),
(52, 69, 147), (100, 115, 255), (0, 24, 236),
(132, 56, 255), (82, 0, 133), (203, 56, 255),
(255, 149, 200), (255, 55, 199)],
dtype=np.float32) / 255.
ALPHA = 0.5
def letterbox(
im: ndarray,
new_shape: Union[Tuple, List] = (640, 640),
color: Union[Tuple, List] = (114, 114, 114)
) -> Tuple[ndarray, float, Tuple[float, float]]:
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[
1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
value=color) # add border
return im, r, (dw, dh)
def blob(im: ndarray) -> Tuple[ndarray, ndarray]:
seg = im.astype(np.float32) / 255
im = im.transpose([2, 0, 1])
im = im[np.newaxis, ...]
im = np.ascontiguousarray(im).astype(np.float32) / 255
return im, seg
def main(args):
device = torch.device(args.device)
Engine = TRTModule(args.engine, device)
H, W = Engine.inp_info[0].shape[-2:]
# set desired output names order
if args.seg:
Engine.set_desired(['bboxes', 'scores', 'labels', 'maskconf', 'proto'])
else:
Engine.set_desired(['num_dets', 'bboxes', 'scores', 'labels'])
images_path = Path(args.imgs)
assert images_path.exists()
save_path = Path(args.out_dir)
if images_path.is_dir():
images = [
i.absolute() for i in images_path.iterdir() if i.suffix in SUFFIXS
]
else:
assert images_path.suffix in SUFFIXS
images = [images_path.absolute()]
if not args.show and not save_path.exists():
save_path.mkdir(parents=True, exist_ok=True)
for image in images:
save_image = save_path / image.name
bgr = cv2.imread(str(image))
draw = bgr.copy()
bgr, ratio, dwdh = letterbox(bgr, (W, H))
dw, dh = int(dwdh[0]), int(dwdh[1])
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
tensor, seg_img = blob(rgb)
dwdh = torch.asarray(dwdh * 2, dtype=torch.float32, device=device)
tensor = torch.asarray(tensor, device=device)
data = Engine(tensor)
if args.seg:
seg_img = torch.asarray(seg_img[dh:H - dh, dw:W - dw, [2, 1, 0]],
device=device)
bboxes, scores, labels, masks = seg_postprocess(
data, bgr.shape[:2], args.conf_thres, args.iou_thres)
mask, mask_color = [m[:, dh:H - dh, dw:W - dw, :] for m in masks]
inv_alph_masks = (1 - mask * 0.5).cumprod(0)
mcs = (mask_color * inv_alph_masks).sum(0) * 2
seg_img = (seg_img * inv_alph_masks[-1] + mcs) * 255
draw = cv2.resize(seg_img.cpu().numpy().astype(np.uint8),
draw.shape[:2][::-1])
else:
bboxes, scores, labels, masks = det_postprocess(data)
bboxes -= dwdh
bboxes /= ratio
for (bbox, score, label) in zip(bboxes, scores, labels):
bbox = bbox.round().int().tolist()
cls_id = int(label)
cls = CLASSES[cls_id]
color = COLORS[cls]
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2)
cv2.putText(draw,
f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255],
thickness=2)
if args.show:
cv2.imshow('result', draw)
cv2.waitKey(0)
else:
cv2.imwrite(str(save_image), draw)
def crop_mask(masks: Tensor, bboxes: Tensor) -> Tensor:
n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(bboxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = torch.arange(w, device=masks.device,
dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = torch.arange(h, device=masks.device,
dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def seg_postprocess(
data: Tuple[Tensor, Tensor, Tensor, Tensor, Tensor],
shape: Union[Tuple, List],
conf_thres: float = 0.25,
iou_thres: float = 0.65) -> Tuple[Tensor, Tensor, Tensor, List]:
assert len(data) == 5
h, w = shape[0] // 4, shape[1] // 4 # 4x downsampling
bboxes, scores, labels, maskconf, proto = (i[0] for i in data)
select = scores > conf_thres
bboxes, scores, labels, maskconf = bboxes[select], scores[select], labels[
select], maskconf[select]
idx = batched_nms(bboxes, scores, labels, iou_thres)
bboxes, scores, labels, maskconf = bboxes[idx], scores[idx], labels[
idx], maskconf[idx]
masks = (maskconf @ proto).view(-1, h, w)
masks = crop_mask(masks, bboxes / 4.)
masks = F.interpolate(masks[None],
shape,
mode='bilinear',
align_corners=False)[0]
masks = masks.gt_(0.5)[..., None]
cidx = (labels % len(MASK_COLORS)).cpu().numpy()
mask_color = torch.tensor(MASK_COLORS[cidx].reshape(-1, 1, 1,
3)).to(bboxes) * ALPHA
out = [masks, masks @ mask_color]
return bboxes, scores, labels, out
def det_postprocess(data: Tuple[Tensor, Tensor, Tensor, Any], **kwargs):
assert len(data) == 4
num_dets, bboxes, scores, labels = (i[0] for i in data)
nums = num_dets.item()
bboxes = bboxes[:nums]
scores = scores[:nums]
labels = labels[:nums]
return bboxes, scores, labels, None
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--engine', type=str, help='Engine file')
parser.add_argument('--imgs', type=str, help='Images file')
parser.add_argument('--show',
action='store_true',
help='Show the detection results')
parser.add_argument('--seg', action='store_true', help='Seg inference')
parser.add_argument('--out-dir',
type=str,
default='./output',
help='Path to output file')
parser.add_argument('--conf-thres',
type=float,
default=0.25,
help='Confidence threshold')
parser.add_argument('--iou-thres',
type=float,
default=0.65,
help='Confidence threshold')
parser.add_argument('--device',
type=str,
default='cuda:0',
help='TensorRT infer device')
parser.add_argument('--profile',
action='store_true',
help='Profile TensorRT engine')
args = parser.parse_args()
return args
def profile(args):
device = torch.device(args.device)
Engine = TRTModule(args.engine, device)
profiler = TRTProfilerV0()
Engine.set_profiler(profiler)
random_input = torch.randn(Engine.inp_info[0].shape, device=device)
_ = Engine(random_input)
if __name__ == '__main__':
args = parse_args()
if args.profile:
profile(args)
else:
main(args)