You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
8.0 KiB
263 lines
8.0 KiB
# YOLOv8-TensorRT |
|
|
|
`YOLOv8` using TensorRT accelerate ! |
|
|
|
--- |
|
[![Build Status](https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fatrox%2Fsync-dotenv%2Fbadge&style=flat)](https://github.com/triple-Mu/YOLOv8-TensorRT) |
|
[![Python Version](https://img.shields.io/badge/Python-3.8--3.10-FFD43B?logo=python)](https://github.com/triple-Mu/YOLOv8-TensorRT) |
|
[![img](https://badgen.net/badge/icon/tensorrt?icon=azurepipelines&label)](https://developer.nvidia.com/tensorrt) |
|
[![C++](https://img.shields.io/badge/CPP-11%2F14-yellow)](https://github.com/triple-Mu/YOLOv8-TensorRT) |
|
[![img](https://badgen.net/github/license/triple-Mu/YOLOv8-TensorRT)](https://github.com/triple-Mu/YOLOv8-TensorRT/blob/main/LICENSE) |
|
[![img](https://badgen.net/github/prs/triple-Mu/YOLOv8-TensorRT)](https://github.com/triple-Mu/YOLOv8-TensorRT/pulls) |
|
[![img](https://img.shields.io/github/stars/triple-Mu/YOLOv8-TensorRT?color=ccf)](https://github.com/triple-Mu/YOLOv8-TensorRT) |
|
|
|
--- |
|
|
|
|
|
# Prepare the environment |
|
|
|
1. Install `CUDA` follow [`CUDA official website`](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#download-the-nvidia-cuda-toolkit). |
|
|
|
🚀 RECOMMENDED `CUDA` >= 11.4 |
|
|
|
2. Install `TensorRT` follow [`TensorRT official website`](https://developer.nvidia.com/nvidia-tensorrt-8x-download). |
|
|
|
🚀 RECOMMENDED `TensorRT` >= 8.4 |
|
|
|
2. Install python requirement. |
|
|
|
``` shell |
|
pip install -r requirement.txt |
|
``` |
|
|
|
3. Install [`ultralytics`](https://github.com/ultralytics/ultralytics) package for ONNX export or TensorRT API building. |
|
|
|
``` shell |
|
pip install ultralytics |
|
``` |
|
|
|
5. Prepare your own PyTorch weight such as `yolov8s.pt` or `yolov8s-seg.pt`. |
|
|
|
***NOTICE:*** |
|
|
|
Please use the latest `CUDA` and `TensorRT`, so that you can achieve the fastest speed ! |
|
|
|
If you have to use a lower version of `CUDA` and `TensorRT`, please read the relevant issues carefully ! |
|
|
|
# Normal Usage |
|
|
|
If you get ONNX from origin [`ultralytics`](https://github.com/ultralytics/ultralytics) repo, you should build engine by yourself. |
|
|
|
You can only use the `c++` inference code to deserialize the engine and do inference. |
|
|
|
You can get more information in [`Normal.md`](docs/Normal.md) ! |
|
|
|
Besides, other scripts won't work. |
|
|
|
# Export End2End ONNX with NMS |
|
|
|
You can export your onnx model by `ultralytics` API and add postprocess such as bbox decoder and `NMS` into ONNX model at the same time. |
|
|
|
``` shell |
|
python3 export-det.py \ |
|
--weights yolov8s.pt \ |
|
--iou-thres 0.65 \ |
|
--conf-thres 0.25 \ |
|
--topk 100 \ |
|
--opset 11 \ |
|
--sim \ |
|
--input-shape 1 3 640 640 \ |
|
--device cuda:0 |
|
``` |
|
|
|
#### Description of all arguments |
|
|
|
- `--weights` : The PyTorch model you trained. |
|
- `--iou-thres` : IOU threshold for NMS plugin. |
|
- `--conf-thres` : Confidence threshold for NMS plugin. |
|
- `--topk` : Max number of detection bboxes. |
|
- `--opset` : ONNX opset version, default is 11. |
|
- `--sim` : Whether to simplify your onnx model. |
|
- `--input-shape` : Input shape for you model, should be 4 dimensions. |
|
- `--device` : The CUDA deivce you export engine . |
|
|
|
You will get an onnx model whose prefix is the same as input weights. |
|
|
|
### Just Taste First |
|
|
|
If you just want to taste first, you can download the onnx model which are exported by `YOLOv8` package and modified by me. |
|
|
|
[**YOLOv8-n**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8n_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1772936700&Signature=r6HgJTTcCSAxQxD9bKO9qBTtigQ%3D) |
|
|
|
[**YOLOv8-s**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8s_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936722&Signature=JjxQFx1YElcVdsCaMoj81KJ4a5s%3D) |
|
|
|
[**YOLOv8-m**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8m_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936739&Signature=IRKBELdVFemD7diixxxgzMYqsWg%3D) |
|
|
|
[**YOLOv8-l**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8l_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936763&Signature=RGkJ4G2XJ4J%2BNiki5cJi3oBkDnA%3D) |
|
|
|
[**YOLOv8-x**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8x_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1673936778&Signature=3o%2F7QKhiZg1dW3I6sDrY4ug6MQU%3D) |
|
|
|
# Build End2End Engine from ONNX |
|
### 1. Build Engine by TensorRT ONNX Python api |
|
|
|
You can export TensorRT engine from ONNX by [`build.py` ](build.py). |
|
|
|
Usage: |
|
|
|
``` shell |
|
python3 build.py \ |
|
--weights yolov8s.onnx \ |
|
--iou-thres 0.65 \ |
|
--conf-thres 0.25 \ |
|
--topk 100 \ |
|
--fp16 \ |
|
--device cuda:0 |
|
``` |
|
|
|
#### Description of all arguments |
|
|
|
- `--weights` : The ONNX model you download. |
|
- `--iou-thres` : IOU threshold for NMS plugin. |
|
- `--conf-thres` : Confidence threshold for NMS plugin. |
|
- `--topk` : Max number of detection bboxes. |
|
- `--fp16` : Whether to export half-precision engine. |
|
- `--device` : The CUDA deivce you export engine . |
|
|
|
You can modify `iou-thres` `conf-thres` `topk` by yourself. |
|
|
|
### 2. Export Engine by Trtexec Tools |
|
|
|
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools. |
|
|
|
Usage: |
|
|
|
``` shell |
|
/usr/src/tensorrt/bin/trtexec \ |
|
--onnx=yolov8s.onnx \ |
|
--saveEngine=yolov8s.engine \ |
|
--fp16 |
|
``` |
|
|
|
**If you installed TensorRT by a debian package, then the installation path of `trtexec` |
|
is `/usr/src/tensorrt/bin/trtexec`** |
|
|
|
**If you installed TensorRT by a tar package, then the installation path of `trtexec` is under the `bin` folder in the path you decompressed** |
|
|
|
# Build TensorRT Engine by TensorRT API |
|
|
|
Please see more information in [`API-Build.md`](docs/API-Build.md) |
|
|
|
***Notice !!!*** We don't support YOLOv8-seg model now !!! |
|
|
|
# Inference |
|
|
|
## 1. Infer with python script |
|
|
|
You can infer images with the engine by [`infer-det.py`](infer-det.py) . |
|
|
|
Usage: |
|
|
|
``` shell |
|
python3 infer-det.py \ |
|
--engine yolov8s.engine \ |
|
--imgs data \ |
|
--show \ |
|
--out-dir outputs \ |
|
--device cuda:0 |
|
``` |
|
|
|
#### Description of all arguments |
|
|
|
- `--engine` : The Engine you export. |
|
- `--imgs` : The images path you want to detect. |
|
- `--show` : Whether to show detection results. |
|
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag. |
|
- `--device` : The CUDA deivce you use. |
|
- `--profile` : Profile the TensorRT engine. |
|
|
|
## 2. Infer with C++ |
|
|
|
You can infer with c++ in [`csrc/detect/end2end`](csrc/detect/end2end) . |
|
|
|
### Build: |
|
|
|
Please set you own librarys in [`CMakeLists.txt`](csrc/detect/end2end/CMakeLists.txt) and modify `CLASS_NAMES` and `COLORS` in [`main.cpp`](csrc/detect/end2end/main.cpp). |
|
|
|
``` shell |
|
export root=${PWD} |
|
cd src/detect/end2end |
|
mkdir build |
|
cmake .. |
|
make |
|
mv yolov8 ${root} |
|
cd ${root} |
|
``` |
|
|
|
Usage: |
|
|
|
``` shell |
|
# infer image |
|
./yolov8 yolov8s.engine data/bus.jpg |
|
# infer images |
|
./yolov8 yolov8s.engine data |
|
# infer video |
|
./yolov8 yolov8s.engine data/test.mp4 # the video path |
|
``` |
|
|
|
# TensorRT Segment Deploy |
|
|
|
Please see more information in [`Segment.md`](docs/Segment.md) |
|
|
|
# DeepStream Detection Deploy |
|
|
|
See more in [`README.md`](csrc/deepstream/README.md) |
|
|
|
# Jetson Deploy |
|
|
|
Only test on `Jetson-NX 4GB`. |
|
See more in [`Jetson.md`](docs/Jetson.md) |
|
|
|
# Profile you engine |
|
|
|
If you want to profile the TensorRT engine: |
|
|
|
Usage: |
|
|
|
``` shell |
|
python3 trt-profile.py --engine yolov8s.engine --device cuda:0 |
|
``` |
|
|
|
# Refuse To Use PyTorch for Model Inference !!! |
|
|
|
If you need to break away from pytorch and use tensorrt inference, |
|
you can get more information in [`infer-det-without-torch.py`](infer-det-without-torch.py), |
|
the usage is the same as the pytorch version, but its performance is much worse. |
|
|
|
You can use `cuda-python` or `pycuda` for inference. |
|
Please install by such command: |
|
|
|
```shell |
|
pip install cuda-python |
|
# or |
|
pip install pycuda |
|
``` |
|
|
|
Usage: |
|
|
|
``` shell |
|
python3 infer-det-without-torch.py \ |
|
--engine yolov8s.engine \ |
|
--imgs data \ |
|
--show \ |
|
--out-dir outputs \ |
|
--method cudart |
|
``` |
|
|
|
#### Description of all arguments |
|
|
|
- `--engine` : The Engine you export. |
|
- `--imgs` : The images path you want to detect. |
|
- `--show` : Whether to show detection results. |
|
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag. |
|
- `--method` : Choose `cudart` or `pycuda`, default is `cudart`. |
|
- `--profile` : Profile the TensorRT engine.
|
|
|