You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

545 lines
11 KiB

//
// Created by ubuntu on 1/24/23.
//
#ifndef SEGMENT_SIMPLE_YOLOV8_SEG_HPP
#define SEGMENT_SIMPLE_YOLOV8_SEG_HPP
#include <fstream>
#include "common.hpp"
#include "NvInferPlugin.h"
using namespace seg;
class YOLOv8_seg
{
public:
explicit YOLOv8_seg(const std::string& engine_file_path);
~YOLOv8_seg();
void make_pipe(bool warmup = true);
void copy_from_Mat(const cv::Mat& image);
void copy_from_Mat(const cv::Mat& image, cv::Size& size);
void letterbox(
const cv::Mat& image,
cv::Mat& out,
cv::Size& size
);
void infer();
void postprocess(
std::vector<Object>& objs,
float score_thres = 0.25f,
float iou_thres = 0.65f,
int topk = 100,
int seg_channels = 32,
int seg_h = 160,
int seg_w = 160
);
static void draw_objects(
const cv::Mat& image,
cv::Mat& res,
const std::vector<Object>& objs,
const std::vector<std::string>& CLASS_NAMES,
const std::vector<std::vector<unsigned int>>& COLORS,
const std::vector<std::vector<unsigned int>>& MASK_COLORS
);
int num_bindings;
int num_inputs = 0;
int num_outputs = 0;
std::vector<Binding> input_bindings;
std::vector<Binding> output_bindings;
std::vector<void*> host_ptrs;
std::vector<void*> device_ptrs;
PreParam pparam;
private:
nvinfer1::ICudaEngine* engine = nullptr;
nvinfer1::IRuntime* runtime = nullptr;
nvinfer1::IExecutionContext* context = nullptr;
cudaStream_t stream = nullptr;
Logger gLogger{ nvinfer1::ILogger::Severity::kERROR };
};
YOLOv8_seg::YOLOv8_seg(const std::string& engine_file_path)
{
std::ifstream file(engine_file_path, std::ios::binary);
assert(file.good());
file.seekg(0, std::ios::end);
auto size = file.tellg();
file.seekg(0, std::ios::beg);
char* trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
initLibNvInferPlugins(&this->gLogger, "");
this->runtime = nvinfer1::createInferRuntime(this->gLogger);
assert(this->runtime != nullptr);
this->engine = this->runtime->deserializeCudaEngine(trtModelStream, size);
assert(this->engine != nullptr);
this->context = this->engine->createExecutionContext();
assert(this->context != nullptr);
cudaStreamCreate(&this->stream);
this->num_bindings = this->engine->getNbBindings();
for (int i = 0; i < this->num_bindings; ++i)
{
Binding binding;
nvinfer1::Dims dims;
nvinfer1::DataType dtype = this->engine->getBindingDataType(i);
std::string name = this->engine->getBindingName(i);
binding.name = name;
binding.dsize = type_to_size(dtype);
bool IsInput = engine->bindingIsInput(i);
if (IsInput)
{
this->num_inputs += 1;
dims = this->engine->getProfileDimensions(
i,
0,
nvinfer1::OptProfileSelector::kMAX);
binding.size = get_size_by_dims(dims);
binding.dims = dims;
this->input_bindings.push_back(binding);
// set max opt shape
this->context->setBindingDimensions(i, dims);
}
else
{
dims = this->context->getBindingDimensions(i);
binding.size = get_size_by_dims(dims);
binding.dims = dims;
this->output_bindings.push_back(binding);
this->num_outputs += 1;
}
}
}
YOLOv8_seg::~YOLOv8_seg()
{
this->context->destroy();
this->engine->destroy();
this->runtime->destroy();
cudaStreamDestroy(this->stream);
for (auto& ptr : this->device_ptrs)
{
CHECK(cudaFree(ptr));
}
for (auto& ptr : this->host_ptrs)
{
CHECK(cudaFreeHost(ptr));
}
}
void YOLOv8_seg::make_pipe(bool warmup)
{
for (auto& bindings : this->input_bindings)
{
void* d_ptr;
CHECK(cudaMallocAsync(
&d_ptr,
bindings.size * bindings.dsize,
this->stream)
);
this->device_ptrs.push_back(d_ptr);
}
for (auto& bindings : this->output_bindings)
{
void* d_ptr, * h_ptr;
size_t size = bindings.size * bindings.dsize;
CHECK(cudaMallocAsync(
&d_ptr,
size,
this->stream)
);
CHECK(cudaHostAlloc(
&h_ptr,
size,
0)
);
this->device_ptrs.push_back(d_ptr);
this->host_ptrs.push_back(h_ptr);
}
if (warmup)
{
for (int i = 0; i < 10; i++)
{
for (auto& bindings : this->input_bindings)
{
size_t size = bindings.size * bindings.dsize;
void* h_ptr = malloc(size);
memset(h_ptr, 0, size);
CHECK(cudaMemcpyAsync(
this->device_ptrs[0],
h_ptr,
size,
cudaMemcpyHostToDevice,
this->stream)
);
free(h_ptr);
}
this->infer();
}
printf("model warmup 10 times\n");
}
}
void YOLOv8_seg::letterbox(
const cv::Mat& image,
cv::Mat& out,
cv::Size& size
)
{
const float inp_h = size.height;
const float inp_w = size.width;
float height = image.rows;
float width = image.cols;
float r = std::min(inp_h / height, inp_w / width);
int padw = std::round(width * r);
int padh = std::round(height * r);
cv::Mat tmp;
if ((int)width != padw || (int)height != padh)
{
cv::resize(
image,
tmp,
cv::Size(padw, padh)
);
}
else
{
tmp = image.clone();
}
float dw = inp_w - padw;
float dh = inp_h - padh;
dw /= 2.0f;
dh /= 2.0f;
int top = int(std::round(dh - 0.1f));
int bottom = int(std::round(dh + 0.1f));
int left = int(std::round(dw - 0.1f));
int right = int(std::round(dw + 0.1f));
cv::copyMakeBorder(
tmp,
tmp,
top,
bottom,
left,
right,
cv::BORDER_CONSTANT,
{ 114, 114, 114 }
);
cv::dnn::blobFromImage(tmp,
out,
1 / 255.f,
cv::Size(),
cv::Scalar(0, 0, 0),
true,
false,
CV_32F
);
this->pparam.ratio = 1 / r;
this->pparam.dw = dw;
this->pparam.dh = dh;
this->pparam.height = height;
this->pparam.width = width;;
}
void YOLOv8_seg::copy_from_Mat(const cv::Mat& image)
{
cv::Mat nchw;
auto& in_binding = this->input_bindings[0];
auto width = in_binding.dims.d[3];
auto height = in_binding.dims.d[2];
cv::Size size{ width, height };
this->letterbox(
image,
nchw,
size
);
this->context->setBindingDimensions(
0,
nvinfer1::Dims
{
4,
{ 1, 3, height, width }
}
);
CHECK(cudaMemcpyAsync(
this->device_ptrs[0],
nchw.ptr<float>(),
nchw.total() * nchw.elemSize(),
cudaMemcpyHostToDevice,
this->stream)
);
}
void YOLOv8_seg::copy_from_Mat(const cv::Mat& image, cv::Size& size)
{
cv::Mat nchw;
this->letterbox(
image,
nchw,
size
);
this->context->setBindingDimensions(
0,
nvinfer1::Dims
{ 4,
{ 1, 3, size.height, size.width }
}
);
CHECK(cudaMemcpyAsync(
this->device_ptrs[0],
nchw.ptr<float>(),
nchw.total() * nchw.elemSize(),
cudaMemcpyHostToDevice,
this->stream)
);
}
void YOLOv8_seg::infer()
{
this->context->enqueueV2(
this->device_ptrs.data(),
this->stream,
nullptr
);
for (int i = 0; i < this->num_outputs; i++)
{
size_t osize = this->output_bindings[i].size * this->output_bindings[i].dsize;
CHECK(cudaMemcpyAsync(this->host_ptrs[i],
this->device_ptrs[i + this->num_inputs],
osize,
cudaMemcpyDeviceToHost,
this->stream)
);
}
cudaStreamSynchronize(this->stream);
}
void YOLOv8_seg::postprocess(std::vector<Object>& objs,
float score_thres,
float iou_thres,
int topk,
int seg_channels,
int seg_h,
int seg_w
)
{
objs.clear();
auto input_h = this->input_bindings[0].dims.d[2];
auto input_w = this->input_bindings[0].dims.d[3];
auto num_anchors = this->output_bindings[0].dims.d[1];
auto num_channels = this->output_bindings[0].dims.d[2];
auto& dw = this->pparam.dw;
auto& dh = this->pparam.dh;
auto& width = this->pparam.width;
auto& height = this->pparam.height;
auto& ratio = this->pparam.ratio;
auto* output = static_cast<float*>(this->host_ptrs[0]);
cv::Mat protos = cv::Mat(seg_channels, seg_h * seg_w, CV_32F,
static_cast<float*>(this->host_ptrs[1]));
std::vector<int> labels;
std::vector<float> scores;
std::vector<cv::Rect> bboxes;
std::vector<cv::Mat> mask_confs;
std::vector<int> indices;
for (int i = 0; i < num_anchors; i++)
{
float* ptr = output + i * num_channels;
float score = *(ptr + 4);
if (score > score_thres)
{
float x0 = *ptr++ - dw;
float y0 = *ptr++ - dh;
float x1 = *ptr++ - dw;
float y1 = *ptr++ - dh;
x0 = clamp(x0 * ratio, 0.f, width);
y0 = clamp(y0 * ratio, 0.f, height);
x1 = clamp(x1 * ratio, 0.f, width);
y1 = clamp(y1 * ratio, 0.f, height);
int label = *(++ptr);
cv::Mat mask_conf = cv::Mat(1, seg_channels, CV_32F, ++ptr);
mask_confs.push_back(mask_conf);
labels.push_back(label);
scores.push_back(score);
bboxes.push_back(cv::Rect_<float>(x0, y0, x1 - x0, y1 - y0));
}
}
#if defined(BATCHED_NMS)
cv::dnn::NMSBoxesBatched(
bboxes,
scores,
labels,
score_thres,
iou_thres,
indices
);
#else
cv::dnn::NMSBoxes(
bboxes,
scores,
score_thres,
iou_thres,
indices
);
#endif
cv::Mat masks;
int cnt = 0;
for (auto& i : indices)
{
if (cnt >= topk)
{
break;
}
cv::Rect tmp = bboxes[i];
Object obj;
obj.label = labels[i];
obj.rect = tmp;
obj.prob = scores[i];
masks.push_back(mask_confs[i]);
objs.push_back(obj);
cnt += 1;
}
cv::Mat matmulRes = (masks * protos).t();
cv::Mat maskMat = matmulRes.reshape(indices.size(), { seg_w, seg_h });
std::vector<cv::Mat> maskChannels;
cv::split(maskMat, maskChannels);
int scale_dw = dw / input_w * seg_w;
int scale_dh = dh / input_h * seg_h;
cv::Rect roi(
scale_dw,
scale_dh,
seg_w - 2 * scale_dw,
seg_h - 2 * scale_dh);
for (int i = 0; i < indices.size(); i++)
{
cv::Mat dest, mask;
cv::exp(-maskChannels[i], dest);
dest = 1.0 / (1.0 + dest);
dest = dest(roi);
cv::resize(
dest,
mask,
cv::Size((int)width, (int)height),
cv::INTER_LINEAR
);
objs[i].boxMask = mask(objs[i].rect) > 0.5f;
}
}
void YOLOv8_seg::draw_objects(const cv::Mat& image,
cv::Mat& res,
const std::vector<Object>& objs,
const std::vector<std::string>& CLASS_NAMES,
const std::vector<std::vector<unsigned int>>& COLORS,
const std::vector<std::vector<unsigned int>>& MASK_COLORS
)
{
res = image.clone();
cv::Mat mask = image.clone();
for (auto& obj : objs)
{
int idx = obj.label;
cv::Scalar color = cv::Scalar(
COLORS[idx][0],
COLORS[idx][1],
COLORS[idx][2]
);
cv::Scalar mask_color = cv::Scalar(
MASK_COLORS[idx % 20][0],
MASK_COLORS[idx % 20][1],
MASK_COLORS[idx % 20][2]
);
cv::rectangle(
res,
obj.rect,
color,
2
);
char text[256];
sprintf(
text,
"%s %.1f%%",
CLASS_NAMES[idx].c_str(),
obj.prob * 100
);
mask(obj.rect).setTo(mask_color, obj.boxMask);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(
text,
cv::FONT_HERSHEY_SIMPLEX,
0.4,
1,
&baseLine
);
int x = (int)obj.rect.x;
int y = (int)obj.rect.y + 1;
if (y > res.rows)
y = res.rows;
cv::rectangle(
res,
cv::Rect(x, y, label_size.width, label_size.height + baseLine),
{ 0, 0, 255 },
-1
);
cv::putText(
res,
text,
cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX,
0.4,
{ 255, 255, 255 },
1
);
}
cv::addWeighted(
res,
0.5,
mask,
0.8,
1,
res
);
}
#endif //SEGMENT_SIMPLE_YOLOV8_SEG_HPP