You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1.5 KiB

Normal Usage of ultralytics

Export TensorRT Engine

1. Python script

Usage:


from ultralytics import YOLO

# Load a model
model = YOLO("yolov8s.pt")  # load a pretrained model (recommended for training)
success = model.export(format="engine", device=0)  # export the model to engine format
assert success

After executing the above script, you will get an engine named yolov8s.engine .

2. CLI tools

Usage:

yolo export model=yolov8s.pt format=engine device=0

After executing the above command, you will get an engine named yolov8s.engine too.

Inference with c++

You can infer with c++ in csrc/detect/normal .

Build:

Please set you own librarys in CMakeLists.txt and modify CLASS_NAMES and COLORS in main.cpp.

Besides, you can modify the postprocess parameters such as num_labels and score_thres and iou_thres and topk in main.cpp.

int num_labels = 80;
int topk = 100;
float score_thres = 0.25f;
float iou_thres = 0.65f;

And build:

export root=${PWD}
cd src/detect/normal
mkdir build
cmake ..
make
mv yolov8 ${root}
cd ${root}

Usage:

# infer image
./yolov8 yolov8s.engine data/bus.jpg
# infer images
./yolov8 yolov8s.engine data
# infer video
./yolov8 yolov8s.engine data/test.mp4 # the video path