You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
13 KiB
372 lines
13 KiB
// |
|
// Created by ubuntu on 4/7/23. |
|
// |
|
#ifndef POSE_NORMAL_YOLOv8_pose_HPP |
|
#define POSE_NORMAL_YOLOv8_pose_HPP |
|
|
|
#include "NvInferPlugin.h" |
|
#include "common.hpp" |
|
#include "fstream" |
|
|
|
using namespace pose; |
|
|
|
class YOLOv8_pose { |
|
public: |
|
explicit YOLOv8_pose(const std::string& engine_file_path); |
|
|
|
~YOLOv8_pose(); |
|
|
|
void make_pipe(bool warmup = true); |
|
|
|
void copy_from_Mat(const cv::Mat& image); |
|
|
|
void copy_from_Mat(const cv::Mat& image, cv::Size& size); |
|
|
|
void letterbox(const cv::Mat& image, cv::Mat& out, cv::Size& size); |
|
|
|
void infer(); |
|
|
|
void postprocess(std::vector<Object>& objs, float score_thres = 0.25f, float iou_thres = 0.65f, int topk = 100); |
|
|
|
static void draw_objects(const cv::Mat& image, |
|
cv::Mat& res, |
|
const std::vector<Object>& objs, |
|
const std::vector<std::vector<unsigned int>>& SKELETON, |
|
const std::vector<std::vector<unsigned int>>& KPS_COLORS, |
|
const std::vector<std::vector<unsigned int>>& LIMB_COLORS); |
|
|
|
int num_bindings; |
|
int num_inputs = 0; |
|
int num_outputs = 0; |
|
std::vector<Binding> input_bindings; |
|
std::vector<Binding> output_bindings; |
|
std::vector<void*> host_ptrs; |
|
std::vector<void*> device_ptrs; |
|
|
|
PreParam pparam; |
|
|
|
private: |
|
nvinfer1::ICudaEngine* engine = nullptr; |
|
nvinfer1::IRuntime* runtime = nullptr; |
|
nvinfer1::IExecutionContext* context = nullptr; |
|
cudaStream_t stream = nullptr; |
|
Logger gLogger{nvinfer1::ILogger::Severity::kERROR}; |
|
}; |
|
|
|
YOLOv8_pose::YOLOv8_pose(const std::string& engine_file_path) |
|
{ |
|
std::ifstream file(engine_file_path, std::ios::binary); |
|
assert(file.good()); |
|
file.seekg(0, std::ios::end); |
|
auto size = file.tellg(); |
|
file.seekg(0, std::ios::beg); |
|
char* trtModelStream = new char[size]; |
|
assert(trtModelStream); |
|
file.read(trtModelStream, size); |
|
file.close(); |
|
initLibNvInferPlugins(&this->gLogger, ""); |
|
this->runtime = nvinfer1::createInferRuntime(this->gLogger); |
|
assert(this->runtime != nullptr); |
|
|
|
this->engine = this->runtime->deserializeCudaEngine(trtModelStream, size); |
|
assert(this->engine != nullptr); |
|
delete[] trtModelStream; |
|
this->context = this->engine->createExecutionContext(); |
|
|
|
assert(this->context != nullptr); |
|
cudaStreamCreate(&this->stream); |
|
this->num_bindings = this->engine->getNbBindings(); |
|
|
|
for (int i = 0; i < this->num_bindings; ++i) { |
|
Binding binding; |
|
nvinfer1::Dims dims; |
|
nvinfer1::DataType dtype = this->engine->getBindingDataType(i); |
|
std::string name = this->engine->getBindingName(i); |
|
binding.name = name; |
|
binding.dsize = type_to_size(dtype); |
|
|
|
bool IsInput = engine->bindingIsInput(i); |
|
if (IsInput) { |
|
this->num_inputs += 1; |
|
dims = this->engine->getProfileDimensions(i, 0, nvinfer1::OptProfileSelector::kMAX); |
|
binding.size = get_size_by_dims(dims); |
|
binding.dims = dims; |
|
this->input_bindings.push_back(binding); |
|
// set max opt shape |
|
this->context->setBindingDimensions(i, dims); |
|
} |
|
else { |
|
dims = this->context->getBindingDimensions(i); |
|
binding.size = get_size_by_dims(dims); |
|
binding.dims = dims; |
|
this->output_bindings.push_back(binding); |
|
this->num_outputs += 1; |
|
} |
|
} |
|
} |
|
|
|
YOLOv8_pose::~YOLOv8_pose() |
|
{ |
|
this->context->destroy(); |
|
this->engine->destroy(); |
|
this->runtime->destroy(); |
|
cudaStreamDestroy(this->stream); |
|
for (auto& ptr : this->device_ptrs) { |
|
CHECK(cudaFree(ptr)); |
|
} |
|
|
|
for (auto& ptr : this->host_ptrs) { |
|
CHECK(cudaFreeHost(ptr)); |
|
} |
|
} |
|
|
|
void YOLOv8_pose::make_pipe(bool warmup) |
|
{ |
|
|
|
for (auto& bindings : this->input_bindings) { |
|
void* d_ptr; |
|
CHECK(cudaMallocAsync(&d_ptr, bindings.size * bindings.dsize, this->stream)); |
|
this->device_ptrs.push_back(d_ptr); |
|
} |
|
|
|
for (auto& bindings : this->output_bindings) { |
|
void * d_ptr, *h_ptr; |
|
size_t size = bindings.size * bindings.dsize; |
|
CHECK(cudaMallocAsync(&d_ptr, size, this->stream)); |
|
CHECK(cudaHostAlloc(&h_ptr, size, 0)); |
|
this->device_ptrs.push_back(d_ptr); |
|
this->host_ptrs.push_back(h_ptr); |
|
} |
|
|
|
if (warmup) { |
|
for (int i = 0; i < 10; i++) { |
|
for (auto& bindings : this->input_bindings) { |
|
size_t size = bindings.size * bindings.dsize; |
|
void* h_ptr = malloc(size); |
|
memset(h_ptr, 0, size); |
|
CHECK(cudaMemcpyAsync(this->device_ptrs[0], h_ptr, size, cudaMemcpyHostToDevice, this->stream)); |
|
free(h_ptr); |
|
} |
|
this->infer(); |
|
} |
|
printf("model warmup 10 times\n"); |
|
} |
|
} |
|
|
|
void YOLOv8_pose::letterbox(const cv::Mat& image, cv::Mat& out, cv::Size& size) |
|
{ |
|
const float inp_h = size.height; |
|
const float inp_w = size.width; |
|
float height = image.rows; |
|
float width = image.cols; |
|
|
|
float r = std::min(inp_h / height, inp_w / width); |
|
int padw = std::round(width * r); |
|
int padh = std::round(height * r); |
|
|
|
cv::Mat tmp; |
|
if ((int)width != padw || (int)height != padh) { |
|
cv::resize(image, tmp, cv::Size(padw, padh)); |
|
} |
|
else { |
|
tmp = image.clone(); |
|
} |
|
|
|
float dw = inp_w - padw; |
|
float dh = inp_h - padh; |
|
|
|
dw /= 2.0f; |
|
dh /= 2.0f; |
|
int top = int(std::round(dh - 0.1f)); |
|
int bottom = int(std::round(dh + 0.1f)); |
|
int left = int(std::round(dw - 0.1f)); |
|
int right = int(std::round(dw + 0.1f)); |
|
|
|
cv::copyMakeBorder(tmp, tmp, top, bottom, left, right, cv::BORDER_CONSTANT, {114, 114, 114}); |
|
|
|
cv::dnn::blobFromImage(tmp, out, 1 / 255.f, cv::Size(), cv::Scalar(0, 0, 0), true, false, CV_32F); |
|
this->pparam.ratio = 1 / r; |
|
this->pparam.dw = dw; |
|
this->pparam.dh = dh; |
|
this->pparam.height = height; |
|
this->pparam.width = width; |
|
; |
|
} |
|
|
|
void YOLOv8_pose::copy_from_Mat(const cv::Mat& image) |
|
{ |
|
cv::Mat nchw; |
|
auto& in_binding = this->input_bindings[0]; |
|
auto width = in_binding.dims.d[3]; |
|
auto height = in_binding.dims.d[2]; |
|
cv::Size size{width, height}; |
|
this->letterbox(image, nchw, size); |
|
|
|
this->context->setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, height, width}}); |
|
|
|
CHECK(cudaMemcpyAsync( |
|
this->device_ptrs[0], nchw.ptr<float>(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this->stream)); |
|
} |
|
|
|
void YOLOv8_pose::copy_from_Mat(const cv::Mat& image, cv::Size& size) |
|
{ |
|
cv::Mat nchw; |
|
this->letterbox(image, nchw, size); |
|
this->context->setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, size.height, size.width}}); |
|
CHECK(cudaMemcpyAsync( |
|
this->device_ptrs[0], nchw.ptr<float>(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this->stream)); |
|
} |
|
|
|
void YOLOv8_pose::infer() |
|
{ |
|
|
|
this->context->enqueueV2(this->device_ptrs.data(), this->stream, nullptr); |
|
for (int i = 0; i < this->num_outputs; i++) { |
|
size_t osize = this->output_bindings[i].size * this->output_bindings[i].dsize; |
|
CHECK(cudaMemcpyAsync( |
|
this->host_ptrs[i], this->device_ptrs[i + this->num_inputs], osize, cudaMemcpyDeviceToHost, this->stream)); |
|
} |
|
cudaStreamSynchronize(this->stream); |
|
} |
|
|
|
void YOLOv8_pose::postprocess(std::vector<Object>& objs, float score_thres, float iou_thres, int topk) |
|
{ |
|
objs.clear(); |
|
auto num_channels = this->output_bindings[0].dims.d[1]; |
|
auto num_anchors = this->output_bindings[0].dims.d[2]; |
|
|
|
auto& dw = this->pparam.dw; |
|
auto& dh = this->pparam.dh; |
|
auto& width = this->pparam.width; |
|
auto& height = this->pparam.height; |
|
auto& ratio = this->pparam.ratio; |
|
|
|
std::vector<cv::Rect> bboxes; |
|
std::vector<float> scores; |
|
std::vector<int> labels; |
|
std::vector<int> indices; |
|
std::vector<std::vector<float>> kpss; |
|
|
|
cv::Mat output = cv::Mat(num_channels, num_anchors, CV_32F, static_cast<float*>(this->host_ptrs[0])); |
|
output = output.t(); |
|
for (int i = 0; i < num_anchors; i++) { |
|
auto row_ptr = output.row(i).ptr<float>(); |
|
auto bboxes_ptr = row_ptr; |
|
auto scores_ptr = row_ptr + 4; |
|
auto kps_ptr = row_ptr + 5; |
|
|
|
float score = *scores_ptr; |
|
if (score > score_thres) { |
|
float x = *bboxes_ptr++ - dw; |
|
float y = *bboxes_ptr++ - dh; |
|
float w = *bboxes_ptr++; |
|
float h = *bboxes_ptr; |
|
|
|
float x0 = clamp((x - 0.5f * w) * ratio, 0.f, width); |
|
float y0 = clamp((y - 0.5f * h) * ratio, 0.f, height); |
|
float x1 = clamp((x + 0.5f * w) * ratio, 0.f, width); |
|
float y1 = clamp((y + 0.5f * h) * ratio, 0.f, height); |
|
|
|
cv::Rect_<float> bbox; |
|
bbox.x = x0; |
|
bbox.y = y0; |
|
bbox.width = x1 - x0; |
|
bbox.height = y1 - y0; |
|
std::vector<float> kps; |
|
for (int k = 0; k < 17; k++) { |
|
float kps_x = (*(kps_ptr + 3 * k) - dw) * ratio; |
|
float kps_y = (*(kps_ptr + 3 * k + 1) - dh) * ratio; |
|
float kps_s = *(kps_ptr + 3 * k + 2); |
|
kps_x = clamp(kps_x, 0.f, width); |
|
kps_y = clamp(kps_y, 0.f, height); |
|
kps.push_back(kps_x); |
|
kps.push_back(kps_y); |
|
kps.push_back(kps_s); |
|
} |
|
|
|
bboxes.push_back(bbox); |
|
labels.push_back(0); |
|
scores.push_back(score); |
|
kpss.push_back(kps); |
|
} |
|
} |
|
|
|
#ifdef BATCHED_NMS |
|
cv::dnn::NMSBoxesBatched(bboxes, scores, labels, score_thres, iou_thres, indices); |
|
#else |
|
cv::dnn::NMSBoxes(bboxes, scores, score_thres, iou_thres, indices); |
|
#endif |
|
|
|
int cnt = 0; |
|
for (auto& i : indices) { |
|
if (cnt >= topk) { |
|
break; |
|
} |
|
Object obj; |
|
obj.rect = bboxes[i]; |
|
obj.prob = scores[i]; |
|
obj.label = labels[i]; |
|
obj.kps = kpss[i]; |
|
objs.push_back(obj); |
|
cnt += 1; |
|
} |
|
} |
|
|
|
void YOLOv8_pose::draw_objects(const cv::Mat& image, |
|
cv::Mat& res, |
|
const std::vector<Object>& objs, |
|
const std::vector<std::vector<unsigned int>>& SKELETON, |
|
const std::vector<std::vector<unsigned int>>& KPS_COLORS, |
|
const std::vector<std::vector<unsigned int>>& LIMB_COLORS) |
|
{ |
|
res = image.clone(); |
|
const int num_point = 17; |
|
for (auto& obj : objs) { |
|
cv::rectangle(res, obj.rect, {0, 0, 255}, 2); |
|
|
|
char text[256]; |
|
sprintf(text, "person %.1f%%", obj.prob * 100); |
|
|
|
int baseLine = 0; |
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); |
|
|
|
int x = (int)obj.rect.x; |
|
int y = (int)obj.rect.y + 1; |
|
|
|
if (y > res.rows) |
|
y = res.rows; |
|
|
|
cv::rectangle(res, cv::Rect(x, y, label_size.width, label_size.height + baseLine), {0, 0, 255}, -1); |
|
|
|
cv::putText(res, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.4, {255, 255, 255}, 1); |
|
|
|
auto& kps = obj.kps; |
|
for (int k = 0; k < num_point + 2; k++) { |
|
if (k < num_point) { |
|
int kps_x = std::round(kps[k * 3]); |
|
int kps_y = std::round(kps[k * 3 + 1]); |
|
float kps_s = kps[k * 3 + 2]; |
|
if (kps_s > 0.5f) { |
|
cv::Scalar kps_color = cv::Scalar(KPS_COLORS[k][0], KPS_COLORS[k][1], KPS_COLORS[k][2]); |
|
cv::circle(res, {kps_x, kps_y}, 5, kps_color, -1); |
|
} |
|
} |
|
auto& ske = SKELETON[k]; |
|
int pos1_x = std::round(kps[(ske[0] - 1) * 3]); |
|
int pos1_y = std::round(kps[(ske[0] - 1) * 3 + 1]); |
|
|
|
int pos2_x = std::round(kps[(ske[1] - 1) * 3]); |
|
int pos2_y = std::round(kps[(ske[1] - 1) * 3 + 1]); |
|
|
|
float pos1_s = kps[(ske[0] - 1) * 3 + 2]; |
|
float pos2_s = kps[(ske[1] - 1) * 3 + 2]; |
|
|
|
if (pos1_s > 0.5f && pos2_s > 0.5f) { |
|
cv::Scalar limb_color = cv::Scalar(LIMB_COLORS[k][0], LIMB_COLORS[k][1], LIMB_COLORS[k][2]); |
|
cv::line(res, {pos1_x, pos1_y}, {pos2_x, pos2_y}, limb_color, 2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#endif // POSE_NORMAL_YOLOv8_pose_HPP
|
|
|