You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.2 KiB
174 lines
6.2 KiB
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Graph, Tensor, Value |
|
|
|
|
|
def make_anchors(feats: Tensor, |
|
strides: Tensor, |
|
grid_cell_offset: float = 0.5) -> Tuple[Tensor, Tensor]: |
|
anchor_points, stride_tensor = [], [] |
|
assert feats is not None |
|
dtype, device = feats[0].dtype, feats[0].device |
|
for i, stride in enumerate(strides): |
|
_, _, h, w = feats[i].shape |
|
sx = torch.arange(end=w, device=device, |
|
dtype=dtype) + grid_cell_offset # shift x |
|
sy = torch.arange(end=h, device=device, |
|
dtype=dtype) + grid_cell_offset # shift y |
|
sy, sx = torch.meshgrid(sy, sx) |
|
anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2)) |
|
stride_tensor.append( |
|
torch.full((h * w, 1), stride, dtype=dtype, device=device)) |
|
return torch.cat(anchor_points), torch.cat(stride_tensor) |
|
|
|
|
|
class TRT_NMS(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward( |
|
ctx: Graph, |
|
boxes: Tensor, |
|
scores: Tensor, |
|
iou_threshold: float = 0.65, |
|
score_threshold: float = 0.25, |
|
max_output_boxes: int = 100, |
|
background_class: int = -1, |
|
box_coding: int = 0, |
|
plugin_version: str = '1', |
|
score_activation: int = 0 |
|
) -> Tuple[Tensor, Tensor, Tensor, Tensor]: |
|
batch_size, num_boxes, num_classes = scores.shape |
|
num_dets = torch.randint(0, |
|
max_output_boxes, (batch_size, 1), |
|
dtype=torch.int32) |
|
boxes = torch.randn(batch_size, max_output_boxes, 4) |
|
scores = torch.randn(batch_size, max_output_boxes) |
|
labels = torch.randint(0, |
|
num_classes, (batch_size, max_output_boxes), |
|
dtype=torch.int32) |
|
|
|
return num_dets, boxes, scores, labels |
|
|
|
@staticmethod |
|
def symbolic( |
|
g, |
|
boxes: Value, |
|
scores: Value, |
|
iou_threshold: float = 0.45, |
|
score_threshold: float = 0.25, |
|
max_output_boxes: int = 100, |
|
background_class: int = -1, |
|
box_coding: int = 0, |
|
score_activation: int = 0, |
|
plugin_version: str = '1') -> Tuple[Value, Value, Value, Value]: |
|
out = g.op('TRT::EfficientNMS_TRT', |
|
boxes, |
|
scores, |
|
iou_threshold_f=iou_threshold, |
|
score_threshold_f=score_threshold, |
|
max_output_boxes_i=max_output_boxes, |
|
background_class_i=background_class, |
|
box_coding_i=box_coding, |
|
plugin_version_s=plugin_version, |
|
score_activation_i=score_activation, |
|
outputs=4) |
|
nums_dets, boxes, scores, classes = out |
|
return nums_dets, boxes, scores, classes |
|
|
|
|
|
class C2f(nn.Module): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
x = self.cv1(x) |
|
x = [x, x[:, self.c:, ...]] |
|
x.extend(m(x[-1]) for m in self.m) |
|
x.pop(1) |
|
return self.cv2(torch.cat(x, 1)) |
|
|
|
|
|
class PostDetect(nn.Module): |
|
export = True |
|
shape = None |
|
dynamic = False |
|
iou_thres = 0.65 |
|
conf_thres = 0.25 |
|
topk = 100 |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
shape = x[0].shape |
|
b, res = shape[0], [] |
|
for i in range(self.nl): |
|
res.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)) |
|
if self.dynamic or self.shape != shape: |
|
self.anchors, self.strides = (x.transpose( |
|
0, 1) for x in make_anchors(x, self.stride, 0.5)) |
|
self.shape = shape |
|
x = [i.view(b, self.no, -1) for i in res] |
|
y = torch.cat(x, 2) |
|
box, cls = y[:, :self.reg_max * 4, ...], y[:, self.reg_max * 4:, |
|
...].sigmoid() |
|
box = box.view(b, 4, self.reg_max, -1).permute(0, 1, 3, 2).contiguous() |
|
box = box.softmax(-1) @ torch.arange(self.reg_max).to(box) |
|
box0, box1 = -box[:, :2, ...], box[:, 2:, ...] |
|
box = self.anchors.repeat(b, 2, 1) + torch.cat([box0, box1], 1) |
|
box = box * self.strides |
|
|
|
return TRT_NMS.apply(box.transpose(1, 2), cls.transpose(1, 2), |
|
self.iou_thres, self.conf_thres, self.topk) |
|
|
|
|
|
class PostSeg(nn.Module): |
|
export = True |
|
shape = None |
|
dynamic = False |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
p = self.proto(x[0]) # mask protos |
|
bs = p.shape[0] # batch size |
|
mc = torch.cat( |
|
[self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], |
|
2) # mask coefficients |
|
box, score, cls = self.forward_det(x) |
|
return box, score, cls, mc.transpose(1, 2), p.flatten(2) |
|
|
|
def forward_det(self, x): |
|
shape = x[0].shape |
|
b, res = shape[0], [] |
|
for i in range(self.nl): |
|
res.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)) |
|
if self.dynamic or self.shape != shape: |
|
self.anchors, self.strides = (x.transpose( |
|
0, 1) for x in make_anchors(x, self.stride, 0.5)) |
|
self.shape = shape |
|
x = [i.view(b, self.no, -1) for i in res] |
|
y = torch.cat(x, 2) |
|
box, cls = y[:, :self.reg_max * 4, ...], y[:, self.reg_max * 4:, |
|
...].sigmoid() |
|
box = box.view(b, 4, self.reg_max, -1).permute(0, 1, 3, 2).contiguous() |
|
box = box.softmax(-1) @ torch.arange(self.reg_max).to(box) |
|
box0, box1 = -box[:, :2, ...], box[:, 2:, ...] |
|
box = self.anchors.repeat(b, 2, 1) + torch.cat([box0, box1], 1) |
|
box = box * self.strides |
|
score, cls = cls.transpose(1, 2).max(dim=-1) |
|
return box.transpose(1, 2), score, cls |
|
|
|
|
|
def optim(module: nn.Module): |
|
s = str(type(module))[6:-2].split('.')[-1] |
|
if s == 'Detect': |
|
setattr(module, '__class__', PostDetect) |
|
elif s == 'Segment': |
|
setattr(module, '__class__', PostSeg) |
|
elif s == 'C2f': |
|
setattr(module, '__class__', C2f)
|
|
|