You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.8 KiB
106 lines
3.8 KiB
from models import TRTModule # isort:skip |
|
import argparse |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from config import ALPHA, CLASSES, COLORS, MASK_COLORS |
|
from models.torch_utils import seg_postprocess |
|
from models.utils import blob, letterbox, path_to_list |
|
|
|
|
|
def main(args: argparse.Namespace) -> None: |
|
device = torch.device(args.device) |
|
Engine = TRTModule(args.engine, device) |
|
H, W = Engine.inp_info[0].shape[-2:] |
|
|
|
# set desired output names order |
|
Engine.set_desired(['outputs', 'proto']) |
|
|
|
images = path_to_list(args.imgs) |
|
save_path = Path(args.out_dir) |
|
|
|
if not args.show and not save_path.exists(): |
|
save_path.mkdir(parents=True, exist_ok=True) |
|
|
|
for image in images: |
|
save_image = save_path / image.name |
|
bgr = cv2.imread(str(image)) |
|
draw = bgr.copy() |
|
bgr, ratio, dwdh = letterbox(bgr, (W, H)) |
|
dw, dh = int(dwdh[0]), int(dwdh[1]) |
|
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) |
|
tensor, seg_img = blob(rgb, return_seg=True) |
|
dwdh = torch.asarray(dwdh * 2, dtype=torch.float32, device=device) |
|
tensor = torch.asarray(tensor, device=device) |
|
# inference |
|
data = Engine(tensor) |
|
|
|
seg_img = torch.asarray(seg_img[dh:H - dh, dw:W - dw, [2, 1, 0]], |
|
device=device) |
|
bboxes, scores, labels, masks = seg_postprocess( |
|
data, bgr.shape[:2], args.conf_thres, args.iou_thres) |
|
masks = masks[:, dh:H - dh, dw:W - dw, :] |
|
indices = (labels % len(MASK_COLORS)).long() |
|
mask_colors = torch.asarray(MASK_COLORS, device=device)[indices] |
|
mask_colors = mask_colors.view(-1, 1, 1, 3) * ALPHA |
|
mask_colors = masks @ mask_colors |
|
inv_alph_masks = (1 - masks * 0.5).cumprod(0) |
|
mcs = (mask_colors * inv_alph_masks).sum(0) * 2 |
|
seg_img = (seg_img * inv_alph_masks[-1] + mcs) * 255 |
|
draw = cv2.resize(seg_img.cpu().numpy().astype(np.uint8), |
|
draw.shape[:2][::-1]) |
|
|
|
bboxes -= dwdh |
|
bboxes /= ratio |
|
|
|
for (bbox, score, label) in zip(bboxes, scores, labels): |
|
bbox = bbox.round().int().tolist() |
|
cls_id = int(label) |
|
cls = CLASSES[cls_id] |
|
color = COLORS[cls] |
|
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2) |
|
cv2.putText(draw, |
|
f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.75, [225, 255, 255], |
|
thickness=2) |
|
if args.show: |
|
cv2.imshow('result', draw) |
|
cv2.waitKey(0) |
|
else: |
|
cv2.imwrite(str(save_image), draw) |
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--engine', type=str, help='Engine file') |
|
parser.add_argument('--imgs', type=str, help='Images file') |
|
parser.add_argument('--show', |
|
action='store_true', |
|
help='Show the detection results') |
|
parser.add_argument('--out-dir', |
|
type=str, |
|
default='./output', |
|
help='Path to output file') |
|
parser.add_argument('--conf-thres', |
|
type=float, |
|
default=0.25, |
|
help='Confidence threshold') |
|
parser.add_argument('--iou-thres', |
|
type=float, |
|
default=0.65, |
|
help='Confidence threshold') |
|
parser.add_argument('--device', |
|
type=str, |
|
default='cuda:0', |
|
help='TensorRT infer device') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
main(args)
|
|
|