You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

125 lines
4.4 KiB

from pathlib import Path
from typing import List, Tuple, Union
import cv2
import numpy as np
from numpy import ndarray
# image suffixs
SUFFIXS = ('.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff',
'.webp', '.pfm')
def letterbox(im: ndarray,
new_shape: Union[Tuple, List] = (640, 640),
color: Union[Tuple, List] = (114, 114, 114)) \
-> Tuple[ndarray, float, Tuple[float, float]]:
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[
1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
value=color) # add border
return im, r, (dw, dh)
def blob(im: ndarray, return_seg: bool = False) -> Union[ndarray, Tuple]:
if return_seg:
seg = im.astype(np.float32) / 255
im = im.transpose([2, 0, 1])
im = im[np.newaxis, ...]
im = np.ascontiguousarray(im).astype(np.float32) / 255
if return_seg:
return im, seg
else:
return im
def path_to_list(images_path: Union[str, Path]) -> List:
if isinstance(images_path, str):
images_path = Path(images_path)
assert images_path.exists()
if images_path.is_dir():
images = [
i.absolute() for i in images_path.iterdir() if i.suffix in SUFFIXS
]
else:
assert images_path.suffix in SUFFIXS
images = [images_path.absolute()]
return images
def crop_mask(masks: ndarray, bboxes: ndarray) -> ndarray:
n, h, w = masks.shape
x1, y1, x2, y2 = np.split(bboxes[:, :, None], [1, 2, 3],
1) # x1 shape(1,1,n)
r = np.arange(w, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = np.arange(h, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def det_postprocess(data: Tuple[ndarray, ndarray, ndarray, ndarray]):
assert len(data) == 4
num_dets, bboxes, scores, labels = (i[0] for i in data)
nums = num_dets.item()
bboxes = bboxes[:nums]
scores = scores[:nums]
labels = labels[:nums]
return bboxes, scores, labels
def seg_postprocess(
data: Tuple[ndarray],
shape: Union[Tuple, List],
conf_thres: float = 0.25,
iou_thres: float = 0.65) \
-> Tuple[ndarray, ndarray, ndarray, ndarray]:
assert len(data) == 2
h, w = shape[0] // 4, shape[1] // 4 # 4x downsampling
outputs, proto = (i[0] for i in data)
bboxes, scores, labels, maskconf = np.split(outputs, [4, 5, 6], 1)
scores, labels = scores.squeeze(), labels.squeeze()
idx = scores > conf_thres
bboxes, scores, labels, maskconf = \
bboxes[idx], scores[idx], labels[idx], maskconf[idx]
cvbboxes = np.concatenate([bboxes[:, :2], bboxes[:, 2:] - bboxes[:, :2]],
1)
labels = labels.astype(np.int32)
v0, v1 = map(int, (cv2.__version__).split('.')[:2])
assert v0 == 4, 'OpenCV version is wrong'
if v1 > 6:
idx = cv2.dnn.NMSBoxesBatched(cvbboxes, scores, labels, conf_thres,
iou_thres)
else:
idx = cv2.dnn.NMSBoxes(cvbboxes, scores, conf_thres, iou_thres)
bboxes, scores, labels, maskconf = \
bboxes[idx], scores[idx], labels[idx], maskconf[idx]
masks = (maskconf @ proto).reshape(-1, h, w)
masks = crop_mask(masks, bboxes / 4.)
masks = cv2.resize(masks.transpose([1, 2, 0]),
shape,
interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
masks = np.ascontiguousarray((masks > 0.5)[..., None])
return bboxes, scores, labels, masks