You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

242 lines
8.5 KiB

from pathlib import Path
from typing import List, Tuple, Union
import cv2
import numpy as np
from numpy import ndarray
# image suffixs
SUFFIXS = ('.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff',
'.webp', '.pfm')
# angle scale
ANGLE_SCALE = 1 / np.pi * 180.0
def letterbox(im: ndarray,
new_shape: Union[Tuple, List] = (640, 640),
color: Union[Tuple, List] = (114, 114, 114)) \
-> Tuple[ndarray, float, Tuple[float, float]]:
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# new_shape: [width, height]
# Scale ratio (new / old)
r = min(new_shape[0] / shape[1], new_shape[1] / shape[0])
# Compute padding [width, height]
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[0] - new_unpad[0], new_shape[1] - new_unpad[
1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
value=color) # add border
return im, r, (dw, dh)
def blob(im: ndarray, return_seg: bool = False) -> Union[ndarray, Tuple]:
seg = None
if return_seg:
seg = im.astype(np.float32) / 255
im = im.transpose([2, 0, 1])
im = im[np.newaxis, ...]
im = np.ascontiguousarray(im).astype(np.float32) / 255
if return_seg:
return im, seg
else:
return im
def sigmoid(x: ndarray) -> ndarray:
return 1. / (1. + np.exp(-x))
def path_to_list(images_path: Union[str, Path]) -> List:
if isinstance(images_path, str):
images_path = Path(images_path)
assert images_path.exists()
if images_path.is_dir():
images = [
i.absolute() for i in images_path.iterdir() if i.suffix in SUFFIXS
]
else:
assert images_path.suffix in SUFFIXS
images = [images_path.absolute()]
return images
def crop_mask(masks: ndarray, bboxes: ndarray) -> ndarray:
n, h, w = masks.shape
x1, y1, x2, y2 = np.split(bboxes[:, :, None], [1, 2, 3],
1) # x1 shape(1,1,n)
r = np.arange(w, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = np.arange(h, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def box_iou(box1: ndarray, box2: ndarray) -> float:
x11, y11, x21, y21 = box1
x12, y12, x22, y22 = box2
x1 = max(x11, x12)
y1 = max(y11, y12)
x2 = min(x21, x22)
y2 = min(y21, y22)
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
union_area = (x21 - x11) * (y21 - y11) + (x22 - x12) * (y22 -
y12) - inter_area
return max(0, inter_area / union_area)
def NMSBoxes(boxes: ndarray,
scores: ndarray,
labels: ndarray,
iou_thres: float,
agnostic: bool = False):
num_boxes = boxes.shape[0]
order = np.argsort(scores)[::-1]
boxes = boxes[order]
labels = labels[order]
indices = []
for i in range(num_boxes):
box_a = boxes[i]
label_a = labels[i]
keep = True
for j in indices:
box_b = boxes[j]
label_b = labels[j]
if not agnostic and label_a != label_b:
continue
if box_iou(box_a, box_b) > iou_thres:
keep = False
if keep:
indices.append(i)
indices = np.array(indices, dtype=np.int32)
return order[indices]
def det_postprocess(data: Tuple[ndarray, ndarray, ndarray, ndarray]):
assert len(data) == 4
num_dets, bboxes, scores, labels = (i[0] for i in data)
nums = num_dets.item()
if nums == 0:
return np.empty((0, 4), dtype=np.float32), np.empty(
(0, ), dtype=np.float32), np.empty((0, ), dtype=np.int32)
# check score negative
scores[scores < 0] = 1 + scores[scores < 0]
bboxes = bboxes[:nums]
scores = scores[:nums]
labels = labels[:nums]
return bboxes, scores, labels
def seg_postprocess(
data: Tuple[ndarray],
shape: Union[Tuple, List],
conf_thres: float = 0.25,
iou_thres: float = 0.65) \
-> Tuple[ndarray, ndarray, ndarray, ndarray]:
assert len(data) == 2
h, w = shape[0] // 4, shape[1] // 4 # 4x downsampling
outputs, proto = (i[0] for i in data)
bboxes, scores, labels, maskconf = np.split(outputs, [4, 5, 6], 1)
scores, labels = scores.squeeze(), labels.squeeze()
idx = scores > conf_thres
if not idx.any(): # no bounding boxes or seg were created
return np.empty((0, 4), dtype=np.float32), \
np.empty((0,), dtype=np.float32), \
np.empty((0,), dtype=np.int32), \
np.empty((0, 0, 0, 0), dtype=np.int32)
bboxes, scores, labels, maskconf = \
bboxes[idx], scores[idx], labels[idx], maskconf[idx]
cvbboxes = np.concatenate([bboxes[:, :2], bboxes[:, 2:] - bboxes[:, :2]],
1)
labels = labels.astype(np.int32)
v0, v1 = map(int, (cv2.__version__).split('.')[:2])
assert v0 == 4, 'OpenCV version is wrong'
if v1 > 6:
idx = cv2.dnn.NMSBoxesBatched(cvbboxes, scores, labels, conf_thres,
iou_thres)
else:
idx = cv2.dnn.NMSBoxes(cvbboxes, scores, conf_thres, iou_thres)
bboxes, scores, labels, maskconf = \
bboxes[idx], scores[idx], labels[idx], maskconf[idx]
masks = sigmoid(maskconf @ proto).reshape(-1, h, w)
masks = crop_mask(masks, bboxes / 4.)
masks = masks.transpose([1, 2, 0])
masks = cv2.resize(masks, (shape[1], shape[0]),
interpolation=cv2.INTER_LINEAR)
masks = masks.transpose(2, 0, 1)
masks = np.ascontiguousarray((masks > 0.5)[..., None], dtype=np.float32)
return bboxes, scores, labels, masks
def pose_postprocess(
data: Union[Tuple, ndarray],
conf_thres: float = 0.25,
iou_thres: float = 0.65) \
-> Tuple[ndarray, ndarray, ndarray]:
if isinstance(data, tuple):
assert len(data) == 1
data = data[0]
outputs = np.transpose(data[0], (1, 0))
bboxes, scores, kpts = np.split(outputs, [4, 5], 1)
scores, kpts = scores.squeeze(), kpts.squeeze()
idx = scores > conf_thres
if not idx.any(): # no bounding boxes or seg were created
return np.empty((0, 4), dtype=np.float32), np.empty(
(0, ), dtype=np.float32), np.empty((0, 0, 0), dtype=np.float32)
bboxes, scores, kpts = bboxes[idx], scores[idx], kpts[idx]
xycenter, wh = np.split(bboxes, [
2,
], -1)
cvbboxes = np.concatenate([xycenter - 0.5 * wh, wh], -1)
idx = cv2.dnn.NMSBoxes(cvbboxes, scores, conf_thres, iou_thres)
cvbboxes, scores, kpts = cvbboxes[idx], scores[idx], kpts[idx]
cvbboxes[:, 2:] += cvbboxes[:, :2]
return cvbboxes, scores, kpts.reshape(idx.shape[0], -1, 3)
def obb_postprocess(
data: Union[Tuple, ndarray],
conf_thres: float = 0.25,
iou_thres: float = 0.65) \
-> Tuple[ndarray, ndarray, ndarray]:
if isinstance(data, tuple):
assert len(data) == 1
data = data[0]
outputs = np.transpose(data[0], (1, 0))
num_cls = outputs.shape[-1] - 5
bboxes, scores, angles = np.split(outputs, [4, num_cls + 4], 1)
scores, labels = scores.max(-1), scores.argmax(-1)
scores, labels, angles = scores.squeeze(), labels.squeeze(
), angles.squeeze()
idx = scores > conf_thres
if not idx.any(): # no obbs were created
return np.empty((0, 4, 2), dtype=np.float32), np.empty(
(0, ), dtype=np.float32), np.empty((0, ), dtype=np.int32)
bboxes, scores, labels, angles = bboxes[idx], scores[idx], labels[
idx], angles[idx] * ANGLE_SCALE
cvrbboxes = [[(xc, yc), (w, h), a]
for (xc, yc, w, h), a in zip(bboxes, angles)]
idx = cv2.dnn.NMSBoxesRotated(cvrbboxes, scores, conf_thres, iou_thres)
points = np.array([cv2.boxPoints(cvrbboxes[i]) for i in idx],
dtype=np.float32)
return points, scores, labels