You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

326 lines
14 KiB

import warnings
from typing import List, OrderedDict, Tuple, Union
import numpy as np
import tensorrt as trt
warnings.filterwarnings(action='ignore', category=DeprecationWarning)
def trtweight(weights: np.ndarray) -> trt.Weights:
weights = weights.astype(weights.dtype.name)
return trt.Weights(weights)
def get_width(x: int, gw: float, divisor: int = 8) -> int:
return int(np.ceil(x * gw / divisor) * divisor)
def get_depth(x: int, gd: float) -> int:
return max(int(round(x * gd)), 1)
def Conv2d(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, out_channel: int, ksize: int, stride: int,
group: int, layer_name: str) -> trt.ILayer:
padding = ksize // 2
conv_w = trtweight(weights[layer_name + '.weight'])
conv_b = trtweight(weights[layer_name + '.bias'])
conv = network.add_convolution_nd(input,
num_output_maps=out_channel,
kernel_shape=trt.DimsHW(ksize, ksize),
kernel=conv_w,
bias=conv_b)
assert conv, 'Add convolution_nd layer failed'
conv.stride_nd = trt.DimsHW(stride, stride)
conv.padding_nd = trt.DimsHW(padding, padding)
conv.num_groups = group
return conv
def Conv(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, out_channel: int, ksize: int, stride: int,
group: int, layer_name: str) -> trt.ILayer:
padding = ksize // 2
if ksize > 3:
padding -= 1
conv_w = trtweight(weights[layer_name + '.conv.weight'])
conv_b = trtweight(weights[layer_name + '.conv.bias'])
conv = network.add_convolution_nd(input,
num_output_maps=out_channel,
kernel_shape=trt.DimsHW(ksize, ksize),
kernel=conv_w,
bias=conv_b)
assert conv, 'Add convolution_nd layer failed'
conv.stride_nd = trt.DimsHW(stride, stride)
conv.padding_nd = trt.DimsHW(padding, padding)
conv.num_groups = group
sigmoid = network.add_activation(conv.get_output(0),
trt.ActivationType.SIGMOID)
assert sigmoid, 'Add activation layer failed'
dot_product = network.add_elementwise(conv.get_output(0),
sigmoid.get_output(0),
trt.ElementWiseOperation.PROD)
assert dot_product, 'Add elementwise layer failed'
return dot_product
def Bottleneck(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, c1: int, c2: int, shortcut: bool,
group: int, scale: float, layer_name: str) -> trt.ILayer:
c_ = int(c2 * scale)
conv1 = Conv(network, weights, input, c_, 3, 1, 1, layer_name + '.cv1')
conv2 = Conv(network, weights, conv1.get_output(0), c2, 3, 1, group,
layer_name + '.cv2')
if shortcut and c1 == c2:
ew = network.add_elementwise(input,
conv2.get_output(0),
op=trt.ElementWiseOperation.SUM)
assert ew, 'Add elementwise layer failed'
return ew
return conv2
def C2f(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, cout: int, n: int, shortcut: bool, group: int,
scale: float, layer_name: str) -> trt.ILayer:
c_ = int(cout * scale) # e:expand param
conv1 = Conv(network, weights, input, 2 * c_, 1, 1, 1, layer_name + '.cv1')
y1 = conv1.get_output(0)
b, _, h, w = y1.shape
slice = network.add_slice(y1, (0, c_, 0, 0), (b, c_, h, w), (1, 1, 1, 1))
assert slice, 'Add slice layer failed'
y2 = slice.get_output(0)
input_tensors = [y1]
for i in range(n):
b = Bottleneck(network, weights, y2, c_, c_, shortcut, group, 1.0,
layer_name + '.m.' + str(i))
y2 = b.get_output(0)
input_tensors.append(y2)
cat = network.add_concatenation(input_tensors)
assert cat, 'Add concatenation layer failed'
conv2 = Conv(network, weights, cat.get_output(0), cout, 1, 1, 1,
layer_name + '.cv2')
return conv2
def SPPF(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, c1: int, c2: int, ksize: int,
layer_name: str) -> trt.ILayer:
c_ = c1 // 2
conv1 = Conv(network, weights, input, c_, 1, 1, 1, layer_name + '.cv1')
pool1 = network.add_pooling_nd(conv1.get_output(0), trt.PoolingType.MAX,
trt.DimsHW(ksize, ksize))
assert pool1, 'Add pooling_nd layer failed'
pool1.padding_nd = trt.DimsHW(ksize // 2, ksize // 2)
pool1.stride_nd = trt.DimsHW(1, 1)
pool2 = network.add_pooling_nd(pool1.get_output(0), trt.PoolingType.MAX,
trt.DimsHW(ksize, ksize))
assert pool2, 'Add pooling_nd layer failed'
pool2.padding_nd = trt.DimsHW(ksize // 2, ksize // 2)
pool2.stride_nd = trt.DimsHW(1, 1)
pool3 = network.add_pooling_nd(pool2.get_output(0), trt.PoolingType.MAX,
trt.DimsHW(ksize, ksize))
assert pool3, 'Add pooling_nd layer failed'
pool3.padding_nd = trt.DimsHW(ksize // 2, ksize // 2)
pool3.stride_nd = trt.DimsHW(1, 1)
input_tensors = [
conv1.get_output(0),
pool1.get_output(0),
pool2.get_output(0),
pool3.get_output(0)
]
cat = network.add_concatenation(input_tensors)
assert cat, 'Add concatenation layer failed'
conv2 = Conv(network, weights, cat.get_output(0), c2, 1, 1, 1,
layer_name + '.cv2')
return conv2
def Detect(
network: trt.INetworkDefinition,
weights: OrderedDict,
input: Union[List, Tuple],
s: Union[List, Tuple],
layer_name: str,
reg_max: int = 16,
fp16: bool = True,
iou: float = 0.65,
conf: float = 0.25,
topk: int = 100,
) -> trt.ILayer:
bboxes_branch = []
scores_branch = []
anchors = []
strides = []
for i, (inp, stride) in enumerate(zip(input, s)):
h, w = inp.shape[2:]
sx = np.arange(0, w).astype(np.float16 if fp16 else np.float32) + 0.5
sy = np.arange(0, h).astype(np.float16 if fp16 else np.float32) + 0.5
sy, sx = np.meshgrid(sy, sx)
a = np.ascontiguousarray(np.stack((sy, sx), -1).reshape(-1, 2))
anchors.append(a)
strides.append(
np.full((1, h * w),
stride,
dtype=np.float16 if fp16 else np.float32))
c2 = weights[f'{layer_name}.cv2.{i}.0.conv.weight'].shape[0]
c3 = weights[f'{layer_name}.cv3.{i}.0.conv.weight'].shape[0]
nc = weights[f'{layer_name}.cv3.0.2.weight'].shape[0]
reg_max_x4 = weights[layer_name + f'.cv2.{i}.2.weight'].shape[0]
assert reg_max_x4 == reg_max * 4
b_Conv_0 = Conv(network, weights, inp, c2, 3, 1, 1,
layer_name + f'.cv2.{i}.0')
b_Conv_1 = Conv(network, weights, b_Conv_0.get_output(0), c2, 3, 1, 1,
layer_name + f'.cv2.{i}.1')
b_Conv_2 = Conv2d(network, weights, b_Conv_1.get_output(0), reg_max_x4,
1, 1, 1, layer_name + f'.cv2.{i}.2')
b_out = b_Conv_2.get_output(0)
b_shape = network.add_constant([
4,
], np.array(b_out.shape[0:1] + (4, reg_max, -1), dtype=np.int32))
assert b_shape, 'Add constant layer failed'
b_shuffle = network.add_shuffle(b_out)
assert b_shuffle, 'Add shuffle layer failed'
b_shuffle.set_input(1, b_shape.get_output(0))
b_shuffle.second_transpose = (0, 3, 1, 2)
bboxes_branch.append(b_shuffle.get_output(0))
s_Conv_0 = Conv(network, weights, inp, c3, 3, 1, 1,
layer_name + f'.cv3.{i}.0')
s_Conv_1 = Conv(network, weights, s_Conv_0.get_output(0), c3, 3, 1, 1,
layer_name + f'.cv3.{i}.1')
s_Conv_2 = Conv2d(network, weights, s_Conv_1.get_output(0), nc, 1, 1,
1, layer_name + f'.cv3.{i}.2')
s_out = s_Conv_2.get_output(0)
s_shape = network.add_constant([
3,
], np.array(s_out.shape[0:2] + (-1, ), dtype=np.int32))
assert s_shape, 'Add constant layer failed'
s_shuffle = network.add_shuffle(s_out)
assert s_shuffle, 'Add shuffle layer failed'
s_shuffle.set_input(1, s_shape.get_output(0))
s_shuffle.second_transpose = (0, 2, 1)
scores_branch.append(s_shuffle.get_output(0))
Cat_bboxes = network.add_concatenation(bboxes_branch)
assert Cat_bboxes, 'Add concatenation layer failed'
Cat_scores = network.add_concatenation(scores_branch)
assert Cat_scores, 'Add concatenation layer failed'
Cat_scores.axis = 1
Softmax = network.add_softmax(Cat_bboxes.get_output(0))
assert Softmax, 'Add softmax layer failed'
Softmax.axes = 1 << 3
SCORES = network.add_activation(Cat_scores.get_output(0),
trt.ActivationType.SIGMOID)
assert SCORES, 'Add activation layer failed'
reg_max = np.arange(
0, reg_max).astype(np.float16 if fp16 else np.float32).reshape(
(1, 1, -1, 1))
constant = network.add_constant(reg_max.shape, reg_max)
assert constant, 'Add constant layer failed'
Matmul = network.add_matrix_multiply(Softmax.get_output(0),
trt.MatrixOperation.NONE,
constant.get_output(0),
trt.MatrixOperation.NONE)
assert Matmul, 'Add matrix_multiply layer failed'
pre_bboxes = network.add_gather(
Matmul.get_output(0),
network.add_constant([
1,
], np.array([0], dtype=np.int32)).get_output(0), 3)
assert pre_bboxes, 'Add gather layer failed'
pre_bboxes.num_elementwise_dims = 1
pre_bboxes_tensor = pre_bboxes.get_output(0)
b, c, _ = pre_bboxes_tensor.shape
slice_x1y1 = network.add_slice(pre_bboxes_tensor, (0, 0, 0), (b, c, 2),
(1, 1, 1))
assert slice_x1y1, 'Add slice layer failed'
slice_x2y2 = network.add_slice(pre_bboxes_tensor, (0, 0, 2), (b, c, 2),
(1, 1, 1))
assert slice_x2y2, 'Add slice layer failed'
anchors = np.concatenate(anchors, 0)[np.newaxis]
anchors = network.add_constant(anchors.shape, anchors)
assert anchors, 'Add constant layer failed'
strides = np.concatenate(strides, 1)[..., np.newaxis]
strides = network.add_constant(strides.shape, strides)
assert strides, 'Add constant layer failed'
Sub = network.add_elementwise(anchors.get_output(0),
slice_x1y1.get_output(0),
trt.ElementWiseOperation.SUB)
assert Sub, 'Add elementwise layer failed'
Add = network.add_elementwise(anchors.get_output(0),
slice_x2y2.get_output(0),
trt.ElementWiseOperation.SUM)
assert Add, 'Add elementwise layer failed'
x1y1 = Sub.get_output(0)
x2y2 = Add.get_output(0)
Cat_bboxes_ = network.add_concatenation([x1y1, x2y2])
assert Cat_bboxes_, 'Add concatenation layer failed'
Cat_bboxes_.axis = 2
BBOXES = network.add_elementwise(Cat_bboxes_.get_output(0),
strides.get_output(0),
trt.ElementWiseOperation.PROD)
assert BBOXES, 'Add elementwise layer failed'
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
'EfficientNMS_TRT', '1')
assert plugin_creator, 'Plugin EfficientNMS_TRT is not registried'
background_class = trt.PluginField('background_class',
np.array(-1, np.int32),
trt.PluginFieldType.INT32)
box_coding = trt.PluginField('box_coding', np.array(0, np.int32),
trt.PluginFieldType.INT32)
iou_threshold = trt.PluginField('iou_threshold',
np.array(iou, dtype=np.float32),
trt.PluginFieldType.FLOAT32)
max_output_boxes = trt.PluginField('max_output_boxes',
np.array(topk, np.int32),
trt.PluginFieldType.INT32)
plugin_version = trt.PluginField('plugin_version', np.array('1'),
trt.PluginFieldType.CHAR)
score_activation = trt.PluginField('score_activation',
np.array(0, np.int32),
trt.PluginFieldType.INT32)
score_threshold = trt.PluginField('score_threshold',
np.array(conf, dtype=np.float32),
trt.PluginFieldType.FLOAT32)
batched_nms_op = plugin_creator.create_plugin(
name='batched_nms',
field_collection=trt.PluginFieldCollection([
background_class, box_coding, iou_threshold, max_output_boxes,
plugin_version, score_activation, score_threshold
]))
batched_nms = network.add_plugin_v2(
inputs=[BBOXES.get_output(0),
SCORES.get_output(0)],
plugin=batched_nms_op)
batched_nms.get_output(0).name = 'num_dets'
batched_nms.get_output(1).name = 'bboxes'
batched_nms.get_output(2).name = 'scores'
batched_nms.get_output(3).name = 'labels'
return batched_nms