2.9 KiB
YOLOv8-pose Model with TensorRT
The yolov8-pose model conversion route is : YOLOv8 PyTorch model -> ONNX -> TensorRT Engine
Notice !!! We don't support TensorRT API building !!!
Export Orin ONNX model by ultralytics
You can leave this repo and use the original ultralytics
repo for onnx export.
1. ONNX -> TensorRT
You can export your onnx model by ultralytics
API.
yolo export model=yolov8s-pose.pt format=onnx opset=11 simplify=True
or run this python script:
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8s-pose.pt") # load a pretrained model (recommended for training)
success = model.export(format="onnx", opset=11, simplify=True) # export the model to onnx format
assert success
Then build engine by Trtexec Tools.
You can export TensorRT engine by trtexec
tools.
Usage:
/usr/src/tensorrt/bin/trtexec \
--onnx=yolov8s-pose.onnx \
--saveEngine=yolov8s-pose.engine \
--fp16
2. Direct to TensorRT (NOT RECOMMAND!!)
Usage:
yolo export model=yolov8s-pose.pt format=engine device=0
or run python script:
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8s-pose.pt") # load a pretrained model (recommended for training)
success = model.export(format="engine", device=0) # export the model to engine format
assert success
After executing the above script, you will get an engine named yolov8s-pose.engine
.
Inference
Infer with python script
You can infer images with the engine by infer-pose.py
.
Usage:
python3 infer-pose.py \
--engine yolov8s-pose.engine \
--imgs data \
--show \
--out-dir outputs \
--device cuda:0
Description of all arguments
--engine
: The Engine you export.--imgs
: The images path you want to detect.--show
: Whether to show detection results.--out-dir
: Where to save detection results images. It will not work when use--show
flag.--device
: The CUDA deivce you use.
Inference with c++
You can infer with c++ in csrc/pose/normal
.
Build:
Please set you own librarys in CMakeLists.txt
and modify KPS_COLORS
and SKELETON
and LIMB_COLORS
in main.cpp
.
Besides, you can modify the postprocess parameters such as score_thres
and iou_thres
and topk
in main.cpp
.
int topk = 100;
float score_thres = 0.25f;
float iou_thres = 0.65f;
And build:
export root=${PWD}
cd src/pose/normal
mkdir build
cmake ..
make
mv yolov8-pose ${root}
cd ${root}
Usage:
# infer image
./yolov8-pose yolov8s-pose.engine data/bus.jpg
# infer images
./yolov8-pose yolov8s-pose.engine data
# infer video
./yolov8-pose yolov8s-pose.engine data/test.mp4 # the video path