from models import TRTModule # isort:skip import argparse from pathlib import Path import cv2 import torch from config import COLORS, KPS_COLORS, LIMB_COLORS, SKELETON from models.torch_utils import pose_postprocess from models.utils import blob, letterbox, path_to_list def main(args: argparse.Namespace) -> None: device = torch.device(args.device) Engine = TRTModule(args.engine, device) H, W = Engine.inp_info[0].shape[-2:] images = path_to_list(args.imgs) save_path = Path(args.out_dir) if not args.show and not save_path.exists(): save_path.mkdir(parents=True, exist_ok=True) for image in images: save_image = save_path / image.name bgr = cv2.imread(str(image)) draw = bgr.copy() bgr, ratio, dwdh = letterbox(bgr, (W, H)) dw, dh = int(dwdh[0]), int(dwdh[1]) rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) tensor = blob(rgb, return_seg=False) dwdh = torch.asarray(dwdh * 2, dtype=torch.float32, device=device) tensor = torch.asarray(tensor, device=device) # inference data = Engine(tensor) bboxes, scores, kpts = pose_postprocess(data, args.conf_thres, args.iou_thres) if bboxes.numel() == 0: # if no bounding box print(f'{image}: no object!') continue bboxes -= dwdh bboxes /= ratio for (bbox, score, kpt) in zip(bboxes, scores, kpts): bbox = bbox.round().int().tolist() color = COLORS['person'] cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2) cv2.putText(draw, f'person:{score:.3f}', (bbox[0], bbox[1] - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.75, [225, 255, 255], thickness=2) for i in range(19): if i < 17: px, py, ps = kpt[i] if ps > 0.5: kcolor = KPS_COLORS[i] px = round(float(px - dw) / ratio) py = round(float(py - dh) / ratio) cv2.circle(draw, (px, py), 5, kcolor, -1) xi, yi = SKELETON[i] pos1_s = kpt[xi - 1][2] pos2_s = kpt[yi - 1][2] if pos1_s > 0.5 and pos2_s > 0.5: limb_color = LIMB_COLORS[i] pos1_x = round(float(kpt[xi - 1][0] - dw) / ratio) pos1_y = round(float(kpt[xi - 1][1] - dh) / ratio) pos2_x = round(float(kpt[yi - 1][0] - dw) / ratio) pos2_y = round(float(kpt[yi - 1][1] - dh) / ratio) cv2.line(draw, (pos1_x, pos1_y), (pos2_x, pos2_y), limb_color, 2) if args.show: cv2.imshow('result', draw) cv2.waitKey(0) else: cv2.imwrite(str(save_image), draw) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--engine', type=str, help='Engine file') parser.add_argument('--imgs', type=str, help='Images file') parser.add_argument('--show', action='store_true', help='Show the detection results') parser.add_argument('--out-dir', type=str, default='./output', help='Path to output file') parser.add_argument('--conf-thres', type=float, default=0.25, help='Confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.65, help='Confidence threshold') parser.add_argument('--device', type=str, default='cuda:0', help='TensorRT infer device') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args)