import argparse from pathlib import Path import cv2 import numpy as np from config import CLASSES, COLORS from models.utils import blob, det_postprocess, letterbox, path_to_list def main(args: argparse.Namespace) -> None: if args.method == 'cudart': from models.cudart_api import TRTEngine elif args.method == 'pycuda': from models.pycuda_api import TRTEngine else: raise NotImplementedError Engine = TRTEngine(args.engine) H, W = Engine.inp_info[0].shape[-2:] images = path_to_list(args.imgs) save_path = Path(args.out_dir) if not args.show and not save_path.exists(): save_path.mkdir(parents=True, exist_ok=True) for image in images: save_image = save_path / image.name bgr = cv2.imread(str(image)) draw = bgr.copy() bgr, ratio, dwdh = letterbox(bgr, (W, H)) rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) tensor = blob(rgb, return_seg=False) dwdh = np.array(dwdh * 2, dtype=np.float32) tensor = np.ascontiguousarray(tensor) # inference data = Engine(tensor) bboxes, scores, labels = det_postprocess(data) bboxes -= dwdh bboxes /= ratio for (bbox, score, label) in zip(bboxes, scores, labels): bbox = bbox.round().astype(np.int32).tolist() cls_id = int(label) cls = CLASSES[cls_id] color = COLORS[cls] cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2) cv2.putText(draw, f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.75, [225, 255, 255], thickness=2) if args.show: cv2.imshow('result', draw) cv2.waitKey(0) else: cv2.imwrite(str(save_image), draw) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--engine', type=str, help='Engine file') parser.add_argument('--imgs', type=str, help='Images file') parser.add_argument('--show', action='store_true', help='Show the detection results') parser.add_argument('--out-dir', type=str, default='./output', help='Path to output file') parser.add_argument('--method', type=str, default='cudart', help='CUDART pipeline') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args)