from models import TRTModule # isort:skip import argparse from pathlib import Path import cv2 import torch from config import CLASSES_OBB, COLORS_OBB from models.torch_utils import obb_postprocess from models.utils import blob, letterbox, path_to_list def main(args: argparse.Namespace) -> None: device = torch.device(args.device) Engine = TRTModule(args.engine, device) H, W = Engine.inp_info[0].shape[-2:] images = path_to_list(args.imgs) save_path = Path(args.out_dir) if not args.show and not save_path.exists(): save_path.mkdir(parents=True, exist_ok=True) for image in images: save_image = save_path / image.name bgr = cv2.imread(str(image)) draw = bgr.copy() bgr, ratio, dwdh = letterbox(bgr, (W, H)) rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) tensor = blob(rgb, return_seg=False) dwdh = torch.asarray(dwdh, dtype=torch.float32, device=device) tensor = torch.asarray(tensor, device=device) # inference data = Engine(tensor) points, scores, labels = obb_postprocess(data, args.conf_thres, args.iou_thres) if points.numel() == 0: # if no points print(f'{image}: no object!') continue points -= dwdh points /= ratio for (point, score, label) in zip(points, scores, labels): point = point.round().int().cpu().numpy() label = int(label) score = float(score) cls = CLASSES_OBB[label] color = COLORS_OBB[cls] cv2.polylines(draw, [point], True, color, 2) cv2.putText(draw, f'{cls}:{score:.3f}', (point[0, 0], point[0, 1] - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.75, [225, 255, 255], thickness=2) if args.show: cv2.imshow('result', draw) cv2.waitKey(0) else: cv2.imwrite(str(save_image), draw) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--engine', type=str, help='Engine file') parser.add_argument('--imgs', type=str, help='Images file') parser.add_argument('--show', action='store_true', help='Show the detection results') parser.add_argument('--out-dir', type=str, default='./output', help='Path to output file') parser.add_argument('--conf-thres', type=float, default=0.25, help='Confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.65, help='Confidence threshold') parser.add_argument('--device', type=str, default='cuda:0', help='TensorRT infer device') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args)