from models import TRTModule # isort:skip import argparse from pathlib import Path import cv2 import torch from config import CLASSES_CLS from models.utils import blob, path_to_list def main(args: argparse.Namespace) -> None: device = torch.device(args.device) Engine = TRTModule(args.engine, device) H, W = Engine.inp_info[0].shape[-2:] images = path_to_list(args.imgs) save_path = Path(args.out_dir) if not args.show and not save_path.exists(): save_path.mkdir(parents=True, exist_ok=True) for image in images: save_image = save_path / image.name bgr = cv2.imread(str(image)) draw = bgr.copy() bgr = cv2.resize(bgr, (W, H)) rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) tensor = blob(rgb, return_seg=False) tensor = torch.asarray(tensor, device=device) # inference data = Engine(tensor) score, cls_id = data[0].max(0) score = float(score) cls_id = int(cls_id) cls = CLASSES_CLS[cls_id] text = f'{cls}:{score:.3f}' (_w, _h), _bl = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1) _y1 = min(10, draw.shape[0]) cv2.rectangle(draw, (10, _y1), (10 + _w, _y1 + _h + _bl), (0, 0, 255), -1) cv2.putText(draw, text, (10, _y1 + _h), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (255, 255, 255), 2) if args.show: cv2.imshow('result', draw) cv2.waitKey(0) else: cv2.imwrite(str(save_image), draw) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--engine', type=str, help='Engine file') parser.add_argument('--imgs', type=str, help='Images file') parser.add_argument('--show', action='store_true', help='Show the detection results') parser.add_argument('--out-dir', type=str, default='./output', help='Path to output file') parser.add_argument('--device', type=str, default='cuda:0', help='TensorRT infer device') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() main(args)